Browse > Article
http://dx.doi.org/10.6564/JKMRS.2013.17.2.086

Structural nature of chemically inequivalent borons in the nonlinear optical material β-BaB2O4 studied using 11B MAS NMR and 11B single-crystal NMR  

Kim, Woo Young (Department of Carbon Fusion Engineering, Jeonju University)
Lim, Ae Ran (Department of Carbon Fusion Engineering, Jeonju University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.17, no.2, 2013 , pp. 86-91 More about this Journal
Abstract
Detailed information about the structural nature of three-coordinate borons in ${\beta}-BaB_2O_4$ is obtained through $^{11}B$ MAS NMR and $^{11}B$ single-crystal NMR. The three-coordinate $BO_3$ of the two borons B(1) and B(2) in ${\beta}-BaB_2O_4$ were distinguished. The spin-lattice relaxation time in the laboratory frame $T_1$ for B(1) and B(2) slowly decreases with increasing temperature, whereas the spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for B(1) and B(2), which differs from $T_1$, is nearly constant. The B(1) and B(2) of the two types were distinguished by $^{11}B$ MAS NMR and $^{11}B$ single-crystal NMR.
Keywords
Nonlinear optical property; Boron; MAS NMR; Single crystal NMR; Relaxation time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayer, B. Gates, Y.D. Yin, F. Kim, and H.Q. Yan, Adv. Mater 15, 353 (2003).   DOI   ScienceOn
2 Q. Zhao, X. Zhu, X. Bai, H. Fan, and Y. Xie, Eur. J. Inorg. Chem. 1829 (2007).
3 J. Zhang, S. Liang, and G. He, Chem. Letters 38, 500 (2009).   DOI   ScienceOn
4 V. Trnovcova, M. Kubliha, A. Kokh, P.P. Fedorov, and R.M. Zakalyukin, Russian J. Electrochemistry 47, 531 (2011).   DOI
5 D. Perlov, S. Livneh, P. Czechowicz, A. Goldgirsh, and D. Loiacono, Cryst. Res. Technol. 46, 651 (2011).   DOI   ScienceOn
6 A.E. Kokh, T.B. Bekker, V.A. Vlezko, and K.A. Kokh, J. Cryst. Growth 318, 602 (2011).   DOI   ScienceOn
7 I.G. Kim and S.H. Choh, J. Phys.: Condens. Matter 11, 8283 (1999).   DOI   ScienceOn
8 A. Sutrisno, C. Lu, R.H. Lipson, and Y. Huang, J. Phys. Chem. C 113, 21196 (2009).   DOI   ScienceOn
9 C.T. Chen, B.C. Wu, A.D. Jiang, and G.M. You, Sci. Sin. B 18, 235 (1985).
10 J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435 (1999).   DOI   ScienceOn
11 A.R. Lim and I.G. Kim, Solid State Commun. 159, 41 (2013).   DOI   ScienceOn
12 S.F. Lu, M.Y. He, and J.L. Huang, Acta. Phys. Sin. 31, 948 (1982).
13 J. Liebertz and S. Stahr, Z. Kristallogr. 165, 91 (1983).   DOI
14 R. Frohlich, Z. Kristallogr. 168, 109 (1984).   DOI
15 B.G. Wang, Z.P. Lu, E. W. Shi, and W.Z. Zhong, Cryst. Res. Technol. 33, 275 (1998).   DOI
16 S.F. Lu, Z.X. Huang, and J.L. Huang, Acta Cryst. C 62, i73 (2006).   DOI   ScienceOn
17 J. Dolinsek, D. Arcon, B. Zalar, R. Pirc, R. Blinc, and R. Kind, Phys. Rev. B 54, R6811 (1996)   DOI   ScienceOn
18 A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, (1961).
19 E. Fukushima, S.B.W. Roeder, Experimental Pulse NMR, Addison-Wesley, Reading, MA, (1981).
20 P. Laszzlo, NMR of Newly Accessible Nuclei, Academic, New York, (1993).
21 V. Trnovcova, P.P. Fedorov, A.E. Kokh, and I. Furar, J. Phy. Chem. Solid 68, 1024 (2007).   DOI   ScienceOn