Browse > Article
http://dx.doi.org/10.6564/JKMRS.2012.16.1.078

Electronic Structure of [NiS4]- Investigated by Single-Crystal EPR and Density Functional Theory  

Min, Su-Young (Department of Chemistry, Kyungpook National University)
Noh, Dong-Youn (Department of Chemistry, Seoul Women's University)
Choi, Cheol-Ho (Department of Chemistry, Kyungpook National University)
Lee, Hong-In (Department of Chemistry, Kyungpook National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.16, no.1, 2012 , pp. 78-90 More about this Journal
Abstract
To understand the electronic structure of $[NiS_4]^-$ complex ions, two complexes with such $[NiS_4]^-$ core, $FcCH=CHPymCH_3[Ni(dmit)_2]$ (Pym = pyridinium, $dmit^{2-}$ = 2-thioxo-1,3-dithiole-4,5-dithiolate) and $FcCH=CHPymCH_3[Ni(dddt)_2]{\cdot}{\frac{1}{2}}H_2O$ ($dddt^{2-}=5,6-dihydro-1,4-dithiin-2,3-dithiolato$), were synthesized to be characterized by X-ray crystallography, single crystal electron paramagnetic resonance (EPR) and density functional theory (DFT) calculation. Powder EPR spectra show narrow g-anisotropy but the anisotropy is bigger in $[Ni(dmit)_2]^-$ than in $[Ni(dddt)_2]^-$, indicating bigger spin density in Ni(III) d-orbital of $[Ni(dmit)_2]^-$ than in $[Ni(dddt)_2]^-$, which is consistent to DFT results. EPR studies of the crystals of the complexes surprisingly suggest that the $g_y$-axis of $[Ni(dddt)_2]^-$ is approximately on or perpendicular to the $[NiS_4]^-$ plane while the $g_y$-axis of $[Ni(dmit)_2]^-$ is on the plane, though DFT study of the complexes of this study and previously reported $[NiS_4]^-$ complexes indicate that the $g_y$-axis is on the $[NiS_4]^-$ plane.
Keywords
Electron paramagnetic resonance; Single crystal EPR; Ni(III) complexes; $[NiS_4]^-$; DFT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Kurmoo, A. W. Graham, P. Day, S. J. Coles, M. B. Hurstouse, J. L. Caulfield, J. Singleton, F. L. Pratt, W. Hayes, L. Ducasse and P. Guionneau, J. Am. Chem. Soc. 117, 12209 (1995).   DOI
2 T. Enoki, J. Yamaura, A. Miyazaki, Bull. Chem. Soc. Jpn 70, 2005 (1997).   DOI
3 E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, V. Laukhin, Nature 408, 447 (2000).   DOI
4 S. Uji, H. Shinagawa, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, H. Kobayashi, Nature 410, 908 (2000).
5 H. Fujiwara, E. Fujiwara, Y. Nakazawa, B. Z. Narymbetov, K. Kato, H. Kobayashi, A. Kobayashi, M. Tokumoto, P. Cassoux, J. Am. Chem. Soc. 123, 306 (2001).   DOI
6 A. Volbeda, E. Garcin, C. Piras, A. L. de Lacey, V. M. Fernandez, E. C. M. Frey, J. C. Fontecilla-Camps, J. Am. Chem. Soc. 118, 12989 (1996).   DOI
7 A. H. Maki, N. Edelstein, A. Davison, R. H. Holm, J. Am. Chem. Soc. 86, 4580 (1964).   DOI
8 M. Sano, H. Adachi, H. Yamatera, Bull. Chem. Soc. Jpn 54, 2636 (1981).   DOI
9 G. N. Schrauzer, V. P. Mayweg, J. Am. Chem. Soc. 87, 3586 (1965).
10 W. E. Hatfield, in "Molecular Metal" (W. E. Hatfield, Ed.), Plenum, New York, 1979.
11 J. T. Devreese, R. P. Evrard, V. E. Van Doren, in "Highly Conducting One-Dimensional Solids" (J. T. Devreese, R. P. Evrard, V. E. Van Doren, Eds.), Plenum, New York, 1979.
12 J. S. Miller, in "Extended Linear Chain Compounds" (J. S. Miller, Ed.), Plenum, New York, 1982 (Vol. 1 and 2)
13 J. S. Miller, in "Extended Linear Chain Compounds" (J. S. Miller, Ed.), Plenum, New York, 1983 (Vol.3).
14 Y. -K. Han, D. -K. Seo, H. Kang, W. Kang, D. -Y. Noh, Inorg. Chem. 43, 7294 (2004).   DOI
15 A. Abragam, B. Bleaney, in "Electron Paramagnetic Resonance of Transition Metal Ions" (A. Abragam, B. Bleaney, 2nd eds.), Clarendon Press, Oxford, 1970.
16 S. Ciurli, S. Mangan, in "Handbook on metalloproteins" (I. Bertini, A. Sigel, H. Sigel, Eds.), pp. 669-708, Marcel Dekker, New York, 2001.
17 B. Jaun, Chimia 48, 50, (1994).
18 J. G. Ferry, Annu. Rev. Microbiol. 49, 305 (1995).   DOI   ScienceOn
19 S. B. Mulrooney, R. P. Hausinger, FEMS Microbiol. Rev. 27, 239 (2003).   DOI
20 P. Day, M. Kurmoo, T. Mallah, I. R. Marsden, R. H. Friend, F. L. Pratt, W. Hayes, D. Chasseau, J. Gaultier, G. Bravic, L. Ducasse, J. Am. Chem. Soc. 114, 10722 (1992).   DOI
21 M. J. Frisch, G. W. Truck, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foreman, J. Cioslowski, B. B. Stefanov, A. Nanayakara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian 94, Gaussian, Inc. Pittsburgh, PA (1995).
22 J. E. Huyett, S. B. Choudhury, D. M. Eichhorn, P. A. Bryngelson, M. J. Maroney, B. M. Hoffman, Inorg. Chem. 37, 1361 (1998).   DOI