Browse > Article
http://dx.doi.org/10.7471/ikeee.2021.25.1.101

Parallel Control Method of a Modular DC/DC Converter for Electric Vehicle Chargers  

Choi, Hye-Won (Dept. of Electrical and Computer Engineering, Ajou University)
Lee, Kyo-Beum (Dept. of Electrical and Computer Engineering, Ajou University)
Publication Information
Journal of IKEEE / v.25, no.1, 2021 , pp. 101-108 More about this Journal
Abstract
This paper proposes a parallel control method of a modular DC/DC converter for electric vehicle (EV) chargers. The EV chargers have been increasing the power capacity using modular converters. There are output current imbalances between the modules, which are caused by the difference of the impedance, delay of the gate driver, and error of the sensors. The conventional strategies for the equal distribution of the output current cause the voltage drop or the high volume and cost of the converters. Therefore, the proposed parallel control strategy effectively balances the output current of modules using a current compensation method. The proposed strategy is verified by simulations. Additional experimental results will be added under various conditions.
Keywords
Electric vehicle charger; Modular converter; DC/DC converter; Parallel control; Droop control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K.-B. Lee, "Advanced Power Electronics, munundang," 2019, ISBN 979-11-5692-402-9.
2 K. M. Bhargavi and N. S. Jayalakshmi, "A New Control Strategy for Plug-in Electric Vehicle of DC Microgrid with PV and Wing Power Integration," J. Electr. Eng. Technol., vol.14, no.1, pp.13-25, 2019. DOI: 10.1007/s42835-018-00013-9   DOI
3 H. J. Raherimihaja, Q. Zhang, T. Na, M. Shao, and J. Wang, "A Three-Phase Integrated Battery Charger for EVs Based on Six-Phase Open-End Wing Machine," IEEE Trans. Power Electron., vol.35, no.11, pp.12122-12132, 2020.   DOI
4 W. Zhou and X. Zhu, "Modular Field Testing System for the Electric Vehicle Off-Board Charger," IET Electr. Syst. Transp., vol.9, no.4, pp.159-167, 2019. DOI: 10.1049/iet-est.2018.5091   DOI
5 H.-W. Choi, S.-M. Kim, J. Kim, Y. Cho, and K.-B. Lee, "Current-Balancing Strategy for Multileg Interleaved DC/DC Converters of Electric-Vehicle Chargers," J. Power Electron., vol.21, pp.94-102, 2021. DOI: 10.1007/s43236-020-00172-x   DOI
6 S.-H. Moon, S.-T. Jou, and K.-B. Lee, "Performance Improvement of a Bidirectional DC-DC Converter for Battery chargers Using an LCLC Filter," J. Elect. Eng. Tech., vol.10, no.2, pp.560-573, 2015. DOI: 10.5370/JEET.2015.10.2.560   DOI
7 H.-W. Choi, S.-M. Kim, J. Kim, Y. Cho, and K.-B. Lee, "Deadbeat Predictive Direct Power Control of Interleaved Buck Converter-Based Fast Battery Chargers for Electric Vehicles," J. Power Electron., vol.20, no.5, pp.1162-1171, 2020. DOI: 10.1007/s43236-020-00106-7   DOI
8 Q. Zhang, X. Zhuang, Y. Liu, C. Wang, and H. Guo, "A Novel Autonomous Current-Sharing Control Strategy for Multiple Paralleled DC-DC Converters in Islanded DC Microgrid," Energies, vol.12, no.20, pp.1-22, 2019. DOI: 10.3390/en12203951   DOI
9 J.-S. Bae, T.-H. Kim, S.-H. Son, H.-S. Kim, C.-H. Yu, and S.-R. Jang, "Series Stacked Modular DC-DC Converter using Simple Voltage Balancing Method," IEEE Trans. Power Electron., vol.36, no.3, pp.2471-2475, 2021. DOI: 10.1109/TPEL.2020.3015103   DOI
10 B. Xie, J. Wang, Y. Jin, Y. Ji, and C. Ma, "Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes fo a Battery Energy Storage System," J. Power Electron., vol.18, no.4, pp.1211-1222, 2018. DOI: 10.6113/JPE.2018.18.4.1211   DOI
11 M. A. Pagliosa, T. B. Lazzarin, and I. Barbi, "Modular Two-Switch Flyback Converter and Analysis of Voltage-Balancing Mechanism for Input-Series and Output-Series Connection," IEEE Trans. Power Electron., vol.34, no.9, pp.8317-8328, 2019. DOI: 10.1109/TPEL.2018.2886072   DOI
12 S. Augustine, K. Mishra, and N. Lakshminarasamma, "Adaptive Droop Control Strategy for Load Sharing and Circulating Current Minimization in Low-Voltage Standalone DC Microgrid," IEEE Trans. Sustain. Energy, vol.6, no.1, pp.132-141, 2015. DOI: 10.1109/TSTE.2014.2360628   DOI
13 T. Li and L. Parsa, "Design, Control, and Analysis of a Fault-Tolerant Softswitching DC-DC Converter for High-Power High-Voltage Applications," IEEE Trans. Power Electron., vol.33, no.2, pp.1094-1104, 2018. DOI: 10.1109/TPEL.2017.2684832   DOI
14 X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, "An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication With DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy," IEEE Trans. Power Electron., vol.29, no.4, pp.1800-1812, Apr. 2014.   DOI
15 B. M. H. Jassim, B. Zahawi, and D. J. Atkinson, "Average Current Control for Parallel Connected Converters," J. Power Electron., vol.19, no.5, pp.1153-1161, 2019. DOI: 10.6113/JPE.2019.19.5.1153   DOI
16 H.-C. Chen, C.-Y. Lu, and U. S. Rout, "Decoupled Master-Slave Current Balancing Control for Three-Phase Interleaved Boost Converts," IEEE Trans. Power Electron., vol.33, no.5, pp.3683-3686, 2018. DOI: 10.1109/TPEL.2017.2760887   DOI
17 H. Jo, J. Lee, and H. Cha, "Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System," Trans. Korean Inst. Power Electron., vol.19, no.1, pp.15-22, 2014. DOI: 10.6113/TKPE.2014.19.1.15   DOI
18 P. M. Le, X. H. T. Pham, H. M. Nguyen, D. D. V. Hoang, T. D. Nguyen, and D. N. Vo, "Line Impedance Estimation Based Adaptive Droop Control Method for Parallel Inverters," J. Power Electron., vol.18, no.1, pp.234-250, 2018. DOI: 10.6113/JPE.2018.18.1.234   DOI
19 P. Jang, "A Study on the Droop Method with Improved Current Distribution Characteristics," J. Inst. Korean Electr. Electron. Eng., vol.23, no.3, pp.785-792, 2019. DOI: 10.7471/ikeee.2019.23.3.785   DOI