Browse > Article
http://dx.doi.org/10.7471/ikeee.2022.26.4.728

Design and Optimization of 4.5 kV 4H-SiC MOSFET with Current Spreading Layer  

Young-Hun, Cho (Dept. of Electronic materials Engineering, Kwangwoon University)
Hyung-Jin, Lee (Dept. of Electronic materials Engineering, Kwangwoon University)
Hee-Jae, Lee (Dept. of Electronic materials Engineering, Kwangwoon University)
Geon-Hee, Lee (Dept. of Electronic materials Engineering, Kwangwoon University)
Sang-Mo, Koo (Dept. of Electronic materials Engineering, Kwangwoon University)
Publication Information
Journal of IKEEE / v.26, no.4, 2022 , pp. 728-735 More about this Journal
Abstract
In this work, we investigated a high-voltage (~4.5 kV) 4H-SiC power DMOSFET with modifications of current spreading layer (CSL), which was introduced below the p-well region for low on-resistance. These include the following: 1) a thickness of CSL (TCSL) from 0 um to 0.9 um; 2) a doping concentration of CSL (NCSL) from 1×1016 cm-3 to 5×1016 cm-3. The design is optimized using TCAD 2D-simulation, and we found that CSL helps to reduce specific on-resistance but also breakdown voltage. The resulting structures exhibit a specific on-resistance (Ron,sp) of 59.61 mΩ·cm2, a breakdown voltage (VB) of 5 kV, and a Baliga's Figure of Merit (BFOM) of 0.43 GW/cm2.
Keywords
SiC; DMOSFET; CSL; on-resistance; simulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Baliga, B. J., "Fundamentals of power semiconductor devices," Springer Science & Business Media. 2010. DOI: 10.1007/978-0-387-47314-7   DOI
2 Persson, C., & Lindefelt, U., "Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap," Physical Review B, Vol.54, No.15, pp.10257. 1996. DOI: 10.1103/PhysRevB.54.10257   DOI
3 She, X., Huang, A. Q., Lucia, O., & Ozpineci, B., "Review of silicon carbide power devices and their applications," IEEE Transactions on Industrial Electronics, Vol.64, No.10, pp.8193-8205. 2017. DOI: 10.1109/TIE.2017.2652401   DOI
4 Elasser, A., & Chow, T. P. "Silicon carbide benefits and advantages for power electronics circuits and systems," Proceedings of the IEEE, Vol.90, No.6, pp.969-986. 2002. DOI: 10.1109/JPROC.2002.1021562   DOI
5 J. N. Shenoy, J. A. Cooper, and M. R. Melloch, "High-voltage double implanted power MOSFETs in 6H-SiC," IEEE Electron Device Lett., vol.18, no.3, pp.93-95, 1997. DOI: 10.1109/55.556091   DOI
6 S.-H. Ryu, S. Krishnaswami, M. Das, J. Richmond, A. Agarwal, J. Palmour, and J. Scofield, "10 kV 123 mΩ-cm2 4H-SiC power DMOSFETs," IEEE Electron Device Lett., vol.25, no.8, pp.556-558, 2004. DOI: 10.1109/LED.2004.832122   DOI
7 G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, W. Holland, M. K. Das, and J. W. Palmour, "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide," IEEE Electron Device Lett., vol.22, no.4, pp.176-178, 2001. DOI: 10.1109/55.915604   DOI
8 C.-Y. Lu, J. A. Cooper, Jr., T. Tsuji, G. Chung, J. R. Williams, K. McDonald, and L. C. Feldman, "Effect of process variations and ambient temperature on electron mobility at SiO2 /4H-SiC interface," IEEE Trans. Electron Devices, vol.50, no.7, pp.1582-1588, 2003. DOI: 10.1109/TED.2003.814974   DOI
9 M. Matin, A. Saha, and J. A. Cooper, Jr., "A self-aligned process for high voltage, short-channel vertical DMOSFETs in 4H-SiC," IEEE Trans. Electron Devices, vol. 51, no.10, pp.1721-1725, 2004. DOI: 10.1109/TED.2004.835622   DOI
10 S.-H. Ryu, S. Krishnaswami, B. Hull, B. Heath, M. Das, J. Richmond, A. Agarwal, J. Palmour, and J. Scofield, "Development of 8 mΩ-cm2, 1.8 kV 4H-SiC DMOSFETs," Mater. Sci. Forum, vol. 527-529, no.2, pp.1261-1264, 2006. DOI: 10.4028/www.scientific.net/MSF.483-485.797   DOI
11 S.-H. Ryu, S. Krishnaswami, M. Das, B. Hull, J. Richmond, B. Heath, A. Agarwal, J. Palmour, and J. Richmond, "10.3 mohm-cm2, 2 kV power DMOSFETs in 4H-SiC," in Proc. 17th Int. Symp. Power Semicond. Devices & IC's, pp.275-278, 2005. DOI: 10.1109/ISPSD.2005.1488004   DOI
12 Saha, A., & Cooper, J. A. "A 1-kV 4H-SiC power DMOSFET optimized for low on-resistance," IEEE Transactions on Electron Devices, Vol.54, No.10, pp.2786-2791. 2007. DOI: 10.1109/TED.2007.904577   DOI
13 Shi, S., Zhou, X., Yue, R., & Wang, Y. "An improved structure of 3.3 kV 4H-SiC VDMOSFETs with lower on-resistance and reverse transfer capacitance," In 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) IEEE, pp.1080-1082, 2016.
14 Kimoto, T., & Cooper, J. A. "Fundamentals of silicon carbide technology: growth, characterization," devices and applications. John Wiley & Sons, 2014. DOI: 10.1002/9781118313534   DOI
15 Ahn, J. J., Moon, K. S., & Koo, S. M. "Optimization of 4H-SiC Vertical MOSFET by Current Spreading Layer and Doping Level of Epilayer," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol.23, No.10, pp.767-770. 2010. DOI: 10.4313/JKEM.2010.23.10.767    DOI