Browse > Article
http://dx.doi.org/10.7471/ikeee.2022.26.4.705

Effect of annealing temperature of solid electrolyte layer on the electrical characteristics of polymer memristor  

Woo-Seok, Kim (Dept. of Creative Convergence Engineering, Hanbat National University)
Eun-Kyung, Noh (Dept. of Creative Convergence Engineering, Hanbat National University)
Jin-Hyuk, Kwon (Research Institute of Printed Electronics & 3D Printing, Industry University Cooperation Foundation, Hanbat National University)
Min-Hoi, Kim (Dept. of Creative Convergence Engineering, Hanbat National University)
Publication Information
Journal of IKEEE / v.26, no.4, 2022 , pp. 705-709 More about this Journal
Abstract
The effect of the annealing temperature of the poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)) solid electrolyte layer on the electrical properties of the P(VDF-TrFE)-based memristor was analyzed. In morphological analyses, the P(VDF-TrFE) thin film with 200℃ annealing temperature (200P(VDF-TrFE)) was shown to have surface roughness ≈5 times larger and thickness ≈20% smaller than that with 100℃ annealing temperature (100P(VDF-TrFE)). Compared to the 100P(VDF-TrFE) memristor (M100), the set voltage of the 200P(VDF-TrFE) memristor (M200) decreased by ≈50% and the magnitude of its reset voltage increased by ≈30%. Moreover, M200 was found to have better memory retention characteristics than M100. These differences were attributed to relatively strong local electric fields inside M200 compared to M100. This study suggests the importance of the annealing temperature in polymer memristors.
Keywords
annealing temperature; memristor; surface roughness; local electric field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Cho et al., "Organic resistive memory devices: performance enhancement, integration, and advanced architectures," Adv. Funct. Mater., vol.21, no.15, pp.2806-2829, 2011. DOI: 10.1002/adfm.201100686   DOI
2 P. Sun et al., "Thermal crosstalk in 3-dimensional RRAM crossbar array," Sci. Rep., vol.5, no.1, pp.1-9, 2015.
3 S. H. Jo et al., "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett., vol.10, no.4, pp.1297-1301, 2010. DOI: 10.1021/nl904092h   DOI
4 V. D. B. Yoeri et al., "Organic electronics for neuromorphic computing," Nature Electronics, vol.1, no.7, pp.386-397, 2018.   DOI
5 H.-L. Park et al., "Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth," Adv. Electron. Mater., vol.6, no.10, pp.2000582, 2020. DOI: 10.1002/aelm.202000582   DOI
6 H.-L. Park et al., "Control of conductive filament growth in flexible organic memristor by polymer alignment," Org. Electron., vol.87, pp.105927, 2020. DOI: 10.1016/j.orgel.2020.105927   DOI
7 H.-L. Park et al., "Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer," Nanoscale, vol.12, no.44, pp.22502-22510,   DOI
8 M. Zaheer et al., "Liquid-Metal-Induced Memristor Behavior in Polymer Insulators", pss (RRL), vol.14, no.5, pp.200050,
9 R. I. Mahdi et al., "Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators", Sens., vol.14, no.10, pp.19115-19127, 2014.   DOI
10 K. Min. Yu et al., "Controllable liquid water sensitivity of polymer-encapsulated oxide thin-film transistors," Semicond. Sci. Technol., vol.35, no.11, pp.115006, 2020. DOI: 10.1088/1361-6641/abad75/meta   DOI
11 Y. Sun et al., "Guiding the growth of a conductive filament by nanoindentation to improve resistive switching," ACS Appl. Mater. Interfaces, vol.9, no.39, pp.34064-34070, 2017. DOI: 10.1021/acsami.7b09710   DOI
12 S.-H. Lee et al., "Interfacial Triggering of Conductive Filament Growth in Organic Flexible Memristor for High Reliability and Uniformity," ACS Appl. Mater. Interfaces, vol.11, no.33, pp.30108-30115, 2019. DOI: 10.1021/acsami.9b10491   DOI