Browse > Article
http://dx.doi.org/10.7471/ikeee.2022.26.2.306

Electrical Characteristics and Deep Level Traps of 4H-SiC MPS Diodes with Different Barrier Heights  

Byun, Dong-Wook (Dept. of Electronic materials Engineering, Kwangwoon University)
Lee, Hyung-Jin (Dept. of Electronic materials Engineering, Kwangwoon University)
Lee, Hee-Jae (Dept. of Electronic materials Engineering, Kwangwoon University)
Lee, Geon-Hee (Dept. of Electronic materials Engineering, Kwangwoon University)
Shin, Myeong-Cheol (Dept. of Electronic materials Engineering, Kwangwoon University)
Koo, Sang-Mo (Dept. of Electronic materials Engineering, Kwangwoon University)
Publication Information
Journal of IKEEE / v.26, no.2, 2022 , pp. 306-312 More about this Journal
Abstract
We investigated electrical properties and deep level traps in 4H-SiC merged PiN Schottky (MPS) diodes with different barrier heights by different PN ratios and metallization annealing temperatures. The barrier heights of MPS diodes were obtained in IV and CV characteristics. The leakage current increased with the lowering barrier height, resulting in 10 times larger current. Additionally, the deep level traps (Z1/2 and RD1/2) were revealed by deep level transient spectroscopy (DLTS) measurement in four MPS diodes. Based on DLTS results, the trap energy levels were found to be shallow level by 22~28% with lower barrier height It could confirm the dependence of the defect level and concentration determined by DLTS on the Schottky barrier height and may lead to incorrect results regarding deep level trap parameters with small barrier heights.
Keywords
4H-SiC; Deep level transient spectroscopy; MPS diode; Schottky barrier height; Trap;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu, L., Wu, J., Ren, N., Guo, Q., & Sheng, K. "1200-V 4H-SiC merged pin Schottky diodes with high avalanche capability," IEEE Transactions on Electron Devices, Vol.67, No.9, pp.3679-3684, 2020. DOI: 10.1109/TED.2020.3007136   DOI
2 Perez-Tomas, A., Brosselard, P., Hassan, J., Jorda, X., Godignon, P., Placidi, M., ... & Bergman, J. P. "Schottky versus bipolar 3.3 kV SiC diodes," Semiconductor Science and Technology, Vol.23, No.12, pp.125004, 2008. DOI: 10.1088/0268-1242/23/12/125004   DOI
3 Skromme, B. J., Luckowski, E., Moore, K., Bhatnagar, M., Weitzel, C. E., Ge-hoski, T., & Ganser, D. "Electrical characteristics of Schottky barriers on 4H-SiC: The effects of barrier height nonuniformity," Journal of Electronic Materials, Vol.29, No.3, pp.376-383. 2000. DOI: 10.1007/s11664-000-0081-9   DOI
4 Sharma, R. K., Hazdra, P., & Popelka, S. "The effect of light ion irradia-tion on 4H-SiC MPS power diode characteristics Experiment and simulation," IEEE Transactions on Nuclear Science, Vol.62, No.2, pp.534-541, 2015. DOI: 10.1109/TNS.2015.2395712   DOI
5 Cheung, S. K., & Cheung, N. W. "Extraction of Schottky diode parame-ters from forward current-voltage characteristics," Applied physics letters, Vol.49, No.2, pp.85-87. 1986. DOI: 10.1063/1.97359   DOI
6 Sasaki, S., Kawahara, K., Feng, G., Alfieri, G., & Kimoto, T. "Major deep levels with the same microstructures observed in n-type 4H-SiC and 6H-SiC," Journal of Applied Physics, Vol.109, No.1, pp.013705. 2011. DOI: 10.1063/1.3528124   DOI
7 Padovani FA, Stratton R. Field and "Thermionic-field emission in Schottky Barriers," Solid-State Electron, Vol.9, No.7, pp.695-707, 1966. DOI: 10.1142/9789814503464_0053   DOI
8 Dabrowska-Szata, M., Sochacki, M., & Szmidt, J. "Characterization of deep electron traps in 4H-SiC Junction Barrier Schottky rectifiers," Solid-State Electronics, Vol.94, pp.56-60, 2014. DOI: 10.1016/j.sse.2014.02.008   DOI
9 Baliga, B. J. "Gallium nitride and silicon carbide power devices," World Scientific Publishing Company. 2016. DOI: 10.1142/10027   DOI
10 Shur, M. "Wide band gap semiconductor technology: State-of-the-art," Solid-State Electronics, Vol.155, pp.65-75. 2019. DOI: 10.1016/j.sse.2019.03.020   DOI
11 Roccaforte F, La Via F, Raineri V, Pierobon R, Zanoni E. "Richardson's constant in inhomogeneous silicon carbide Schottky contacts," J Appl Phys, Vol.93, No.11, pp.9137-44, 2003. DOI: 10.1063/1.1573750   DOI
12 Bellocchi, G., Vivona, M., Bongiorno, C., Badala, P., Bassi, A., Rascuna, S., & Roccaforte, F. "Barrier height tuning in Ti/4H-SiC Schottky diodes," Solid-State Electronics, Vol.186, pp.108042, 2021. DOI: 10.1016/j.sse.2021.108042   DOI
13 Son, W. Y., Shin, M. C., Schweitz, M., Lee, S. K., & Koo, S. M. "Al Im-plantation and Post Annealing Effects in n-Type 4H-SiC," Journal of Nanoelectron-ics and Optoelectronics, Vol.15, No.7, pp.777-782, 2020. DOI: 10.1166/jno.2020.2818   DOI
14 Pan, Y., Tian, L., Wu, H., Li, Y., & Yang, F. "3.3 kV 4H-SiC JBS diodes with single-zone JTE termination," Microelectronic Engineering, Vol.181, pp.10-15. 2017. DOI: 10.1016/j.mee.2017.05.054   DOI
15 Kyoung, S., Jung, E. S., & Sung, M. Y. "Post-annealing processes to improve inhomogeneity of Schottky barrier height in Ti/Al 4H-SiC Schottky barrier diode," Microelectronic Engineering, Vol.154, pp.69-73, 2016. DOI: 10.1016/j.mee.2016.01.013   DOI
16 Cabello, M., Soler, V., Rius, G., Montserrat, J., Rebollo, J., & Godignon, P. "Advanced processing for mobility improvement in 4H-SiC MOSFETs," A review. Materials Science in Semiconductor Processing, Vol.78, pp.22-31. 2018. DOI: 10.1016/j.mssp.2017.10.030   DOI
17 Yakuphanoglu, F., & Senkal, B. F. "Electronic and thermoelectric prop-erties of polyaniline organic semiconductor and electrical characterization of Al/PANI MIS diode," The Journal of Physical Chemistry C, Vol.111, No.4, pp.1840-1846, 2007. DOI: 10.1021/jp0653050   DOI
18 Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W. J., Schoner, A., & Nordell, N. "Deep defect centers in silicon carbide monitored with deep level transient spectroscopy," physica status solidi (a), Vol.162, No.1, pp.199-225. 1997. DOI: 10.7471/ikeee.2022.26.1.50   DOI
19 Kvamsdal, K. E. "Carbon vacancy engineering in p+ n 4H-SiC diodes by thermal processing," Master's thesis, 2019.
20 Kawahara, K., Suda, J., Pensl, G., & Kimoto, T. "Reduction of deep levels generated by ion implantation into n-and p-type 4H-SiC," Journal of Applied Physics, Vol.108, No.3, pp.033706. 2010. DOI: 10.1063/1.3456159   DOI
21 Reshanov, S. A., Pensl, G., Danno, K., Kimoto, T., Hishiki, S., Ohshima, T., ... & Choyke, W. J. "Effect of the Schottky barrier height on the detection of midgap levels in 4 H-SiC by deep level transient spectroscopy," Journal of Applied Physics, Vol.102, No.11, pp.113702, 2007. DOI: 10.1063/1.2818050   DOI
22 Lee, Y. J., Cho, S., Seo, J. H., Min, S. J., An, J. I., Oh, J. M., ... & Lee, D. "Electrical Characteristics of 4H-SiC Junction Barrier Schottky Diode," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol.31, No.6, pp. 367-371, 2018. DOI: 10.4313/JKEM.2018.31.6.367   DOI
23 Pascu, R., Craciunoiu, F., Kusko, M., Draghici, F., Dinescu, A., & Danila, M. "The effect of the post-metallization annealing of Ni/n-type 4H-SiC Schottky contact," In CAS 2012 (International Semiconductor Conference) Vol.2, pp.457-460, 2012. DOI: 10.1109/SMICND.2012.6400732   DOI
24 Kawahara, K., Alfieri, G., & Kimoto, T. "Detection and depth analyses of deep levels generated by ion implantation in n-and p-type 4 H-SiC," Journal of Applied Physics, Vol.106, No.1, pp.013719. 2009. DOI: 10.1063/1.3159901   DOI
25 R. T. Tung, "Electron transport at metal-semiconductor interfaces: general theory," Phys. Rev. B Vol.45, pp.13509, 1992. DOI: 10.1103/PhysRevB.45.13509   DOI
26 Jiang, Y., Sung, W., Song, X., Ke, H., Liu, S., Baliga, B. J., ... & Van Brunt, E. "10kV SiC MPS diodes for high temperature applications." In 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) IEEE. pp.43-46, 2016. DOI: 10.1109/ISPSD.2016.7520773   DOI