Browse > Article
http://dx.doi.org/10.7471/ikeee.2020.24.1.97

A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features  

Yang, Dong Won (Ground Technology Research Institute(GTRI), Agency for Defense Development(ADD))
Publication Information
Journal of IKEEE / v.24, no.1, 2020 , pp. 97-105 More about this Journal
Abstract
A thermal imaging sensor receives the radiating energy from the target and the background, so it has been widely used for detection, tracking, and classification of targets at night for military purpose. In recognizing the target automatically using thermal images, if the correct edges of object are used then it can generate the classification results with high accuracy. However since the thermal images have lower spatial resolution and more blurred edges than color images, the accuracy of the classification using thermal images can be decreased. In this paper, to overcome this problem, a new hierarchical classifier using both shape and local features based on the segmentation reliabilities, and the class/pose updating method for vehicle classification are proposed. The proposed classification method was validated using thermal video sequences of more than 20,000 images which include four types of military vehicles - main battle tank, armored personnel carrier, military truck, and estate car. The experiment results showed that the proposed method outperformed the state-of-the-arts methods in classification accuracy.
Keywords
class and pose update; hierarchical classifier; local features; shape features; vehicle classification method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, "A Novel Video Dataset for Change Detection Benchmarking," IEEE Trans. on Image Process., Nol.23, No.11, pp.4663-4679, 2014. DOI: 10.1109/TIP.2014.2346013   DOI
2 Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, "Comparative study of background subtraction algorithms," J. Electron. Imag., Vol.19, No.3. 2010. DOI: 10.1117/1.3456695
3 M. S. Allili, N. Bouguila, and D. Ziou, "Finite general Gaussian mixture modeling and application to image and video foreground segmentation," J. Electron. Imag., Vol.17, No.1, 2008. DOI: 10.1109/CRV.2007.33
4 O. Barnich, and M. V. Droogenbroeck, "ViBe: A Universal Background Subtraction Algorithm for Video Sequences," IEEE Trans. Image Process., Vol.20, No.6, pp.1709-1724, 2011. DOI: 10.1109/TIP.2010.2101613   DOI
5 M. V. Droogenbroeck and O. Paquot, "Background Subtraction: Experiments and Improvements for ViBe," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), pp.32-37, 2012. DOI: 10.1109/CVPRW.2012.6238924
6 D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., Vol.60, pp.91-110, 2004. DOI: 10.1023/B:VISI.0000029664.99615.94   DOI
7 H. Bay, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust Features," in Proc. Eur. Conf. Comput. Vis., pp.404-417, 2006. DOI: 10.1007/11744023_32
8 N. Dalal, and B. Triggs, "Histograms of Oriented Gradients for Human Detection," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., vol.1, pp.886-893, 2005. DOI: 10.1109/CVPR.2005.177
9 A. Bosch, A. Zisserman, and X. Munoz, "Representing shape with a spatial pyramid kernel," in Proc. of the 6th ACM Int. Conf. on Image and Video Retrieval, pp.401-408, 2007. DOI: 10.1145/1282280.1282340
10 P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object Detection with Discriminatively Trained Part-Based Models," IEEE Trans. Pattern Anal. Mach. Intell., Vol.32, No.9, pp.1627-1645, 2010. DOI: 10.1109/TPAMI.2009.167   DOI
11 S. Belongie, J. Malik, and J. Puzicha, "Shape Matching and Object Recognition Using Shape Contexts," IEEE Trans. Pattern Anal. Mach. Intell., Vol.24, No.24, pp.509-522, 2002. DOI: 10.1109/34.993558   DOI
12 A. Oliva, and A. Torralba, "Building the gist of a scene: the role of global image features in recognition," Progress in Brain Research, vol.155, pp.23-36, 2006. DOI: 10.1.1.304.2750   DOI
13 H. Riemenschneider, M. Donoser, and H. Bischof, "Using Partial Edge Contour Matches for Efficient Object Category Localization," in Proc. Eur. Conf. Comput. Vis., pp.29-42, 2010. DOI: 10.1007/978-3-642-15555-0_3
14 Y. Mingqiang, K. Kidiyo, and R. Joseph, "A survey of shape feature extraction techniques," Pattern Recognit., pp.43-90, 2008. DOI: 10.5772/6237
15 D. W. Yang, H. W. Park, "A New Shape Feature for Vehicle Classification in Thermal Video Sequences," IEEE Trans. Circuits Syst. Video Technol., Vol.26, No.7, pp.1363-1375, 2016. DOI: 10.1109/TCSVT.2015.2452780   DOI
16 C. C. Chang, and C. J. Lin, "LIBSVM: A Library for Support Vector Machines," http://www.csie.ntu.edu.tw/-cjlin/papers/libsvm.pdf, 2012.
17 B. Waske, and J. A. Benediktsson, "Fusion of Support Vector Machines for Classification of Multisensor Data," IEEE Trans. Geosci. Remote Sens., Vol.45, No.12, pp.3858-3866, 2007. DOI: 10.1109/TGRS.2007.898446   DOI
18 L. Breiman, "Random Forests," Machine Learning, Vol.45, pp.5-32, 2001. DOI: 10.1023/A:1010933404324   DOI
19 D. W. Yang, Y. Lee, D. Kwak, "A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability," Journal of KIMST (Korea Institute of Military Science and Technology), Vol.20, No.1, pp.40-47, 2017. DOI: 10.9766/KIMST.2017.20.1.040
20 B. C. Ko, D-Y. Kim, J-H. Jung, and J-Y. Nam, "Three-level cascade of random forests for rapid human detection," Optical Engineering, Vol.52, No.2, pp.027204(1-9), 2013. DOI: 10.1117/1.OE.52.2.027204   DOI
21 M. Hodlmoser, B. Micusik, M.-Y. Liu, M. Pollefeys, M. Kampel, "Classification and Pose Estimation of Vehicles in Videos by 3D Modeling within Discrete-Continuous Optimization," 3DIMPVT (3D Imaging, Modeling, Processing, Visualization and Transmission), 2012. DOI: 10.1109/3DIMPVT.2012.23