Browse > Article
http://dx.doi.org/10.7471/ikeee.2020.24.1.284

Temperature Reliability Analysis based on SiC UMOSFET Structure  

Lee, Jeongyeon (Dept. of Electronics Engineering, Sogang University)
Kim, Kwang-Soo (Dept. of Electronics Engineering, Sogang University)
Publication Information
Journal of IKEEE / v.24, no.1, 2020 , pp. 284-292 More about this Journal
Abstract
SiC-based devices perform well in high-voltage environments of more than 1200V compared to silicon devices, and are particularly stable at very high temperatures. Therefore, 1700V UMOSFET has been actively researched and developed for the use of electric power systems such as electric vehicles and aircrafts. In this paper, we analysed thermal variations of critical variables (breakdown voltage (BV), on-resistance (Ron), threshold voltage (vth), and transconductance (gm)) for the three type 1700V UMOSFETs-Conventional UMOSFET (C-UMOSFET), Source Trench UMOSFET (ST-UMOSFET), and Local Floating Superjunction UMOSFET (LFS-UMOSFET). All three devices showed BV increase, Ron increase, vth decrease, and gm decrease with increasing temperature. However, there are differences in BV, Ron, vth, gm according to the structural differences of the three devices, and the degree and cause of the analysis were compared. All results were simulated using sentaurus TCAD.
Keywords
4H-SiC; Temperature variation effect; breakdown voltage; on-resistance; threshold voltage shift; transconductance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Chen, C. Cai, T. Wang, Q. Guo, and K. Sheng, "Cryogenic and high temperature performance of 4H-SiC power MOSFETs," In 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp.207-210, 2013. DOI: 10.1109/APEC.2013.6520209
2 B. J. Baliga, Advanced Power MOSFET Concepts, Springer Science & Business Media, New York, 2010.
3 B. Asllani, A. Castellazzi, O. A. Salvado, A. Fayyaz, H. Morel, and D. Planson, "VTH-Hysteresis and Interface States Characterisation in SiC Power MOSFETs with Planar and Trench Gate," 2019 IEEE International Reliability Physics Symposium (IRPS), pp.1-6, 2019. DOI: 10.1109/irps.2019.8720612
4 M. Hasanuzzaman, S. K. Islam, and L. M. Tolbert, "Effects of temperature variation (300-600 K) in MOSFET modeling in 6H-silicon carbide," Solid-State Electronics, Vol.48, No.1, pp.125-132, 2004. DOI: 10.1016/S0038-1101(03)00293-4   DOI
5 L. Hui, L. Xinglin, H. Yaogang, Z. Zheng, S. Erbing, and X. Hongwei, "Analysis of SiC MOSFET dI/dt and its temperature dependence," IET Power Electronics, Vol.11, No.3, pp.491-500, 2018. DOI: 10.1049/iet-pel.2017.0203   DOI
6 B. J. Baliga, Fundamentals of Power Semiconductor Devices, Springer Science & Business Media, New York, 2008.
7 B. Asllani, A. Fayyaz, A. Castellazzi, H. Morel, and D. Planson, "VTH subthreshold hysteresis technology and temperature dependence in commercial 4H-SiC MOSFETs," Microelectronics Reliability, Vol.88, pp.604-609, 2018. DOI: 10.1016/j.microrel.2018.06.047   DOI
8 K. Puschkarsky, T. Grasser, T. Aichinger, W. Gustin, and H. Reisinger, "Review on SiC MOSFETs High-Voltage Device Reliability Focusing on threshold voltage Instability," IEEE Transactions on Electron Devices, Vol.66, No.11, pp.4604-4616, 2019. DOI: 10.1109/TED.2019.2938262   DOI
9 H. Li, X. Lia, Y. Hu, Z. Huang, and K. Wang, "Analysis of voltage variation in silicon carbide MOSFETs during turn-on and turn-off," Energies, Vol.10, No.10, pp.1456, 2017. DOI: 10.3390/en10101456   DOI
10 T. Aichinger, G. Rescher, and G. Pobegen, "Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs," Microelectronics Reliability, Vol.80, pp.68-78, 2018. DOI: 10.1016/j.microrel.2017.11.020   DOI
11 T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, "Power conversion with SiC devices at extremely high ambient temperatures," IEEE Transactions on Power electronics, Vol.22, No.4, pp.1321-1329, 2007. DOI: 10.1109/TPEL.2007.900561   DOI
12 W. Zhou, X. Zhong, and K. Sheng, "High temperature stability and the performance degradation of SiC MOSFETs," IEEE Transactions on Power electronics, Vol.29, No.5, pp.2329-2337, 2013. DOI: 10.1109/TPEL.2013.2283509   DOI
13 Z. Chen, Y. Yao, D. Boroyevich, K. D. Ngo, P. Mattavelli, and K. Rajashekara, "A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications," IEEE Transactions on Power electronics, Vol.29, No.5, pp.2307-2320, 2013. DOI: 10.1109/TPEL.2013.2283245   DOI
14 G. Jinyoung and K. Kwangsoo, "Low on-resistance 4H-SiC UMOSFET with local floating superjunction," Journal of Computational Electronics, Vol.19, pp.234-241, 2020. DOI: 10.1007/s10825-019-01408-1   DOI
15 B. J. Baliga, Silicon Carbide Power MOSFET, World Scientific Publishing Co., New York, 2006.
16 K. Taehong and K. Kwangsoo, "High Breakdown Voltage and Low On-Resistance 4H-SiC UMOSFET with Source-Trench Optimization," ECS Journal of Solid State Science and Technology, Vol.8, No.8, pp.147-152, 2019, DOI: 10.1149/2.0091908jss