Browse > Article
http://dx.doi.org/10.7471/ikeee.2019.23.4.1128

Transition Metal Oxide Multi-Layer Color Glass for Building Integrated Photovoltaic System  

Ahn, Hyeon-Sik (Department of Electronic Engineering, Hanbat National University)
Gasonoo, Akpeko (Department of Electronic Engineering, Hanbat National University)
Jang, Eun-Jeong (Department of Electronic Engineering, Hanbat National University)
Kim, Min-Hoi (Department of Creative Convergence Engineering, Hanbat National University)
Lee, Jae-Hyun (Department of Creative Convergence Engineering, Hanbat National University)
Choi, Yoonseuk (Department of Electronic Engineering, Hanbat National University)
Publication Information
Journal of IKEEE / v.23, no.4, 2019 , pp. 1128-1133 More about this Journal
Abstract
This paper proposed colored front panel glass for Building Integrated Photovoltaic (BIPV) systems using multi-layered thin films composed of transition metal oxide (TMO) layers. Molybdenum oxide (MoO3) and tungsten oxide (WO3) provided complementary and suitable materials in making effective interference of reflected light from interfaces with significant difference in refractive indices. A simple, fast, and cheap fabrication method was achieved by depositing the multi-layer films in a single thermal evaporator. Magenta colored glass with optical transmittance of more than 90% was achieved with MoO3 (60nm)/WO3(100nm) multi-layered film. This technology could play in a critical role in commercial BIPV system applications.
Keywords
MoO3; WO3; Multi-layer; Transition Metal Oxide; BIPV;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Mertin, V. Hody-Le Caer, M. Joly, I. Mack, P. Oelhafen,, J.-L. Scartezzini, A. Schuler, "Reactively sputtered coatings on architectural glazing for coloured active solar thermal facades," Energy and Buildings, vol.68, PART C, pp.764-770, 2014. DOI: 10.1016/j.enbuild.2012.12.030   DOI
2 A. Gasonoo, H.-S. Ahn, M.-H. Kim, J.-H. Lee, Y. Choi, "Metal Oxide Multi-Layer Color Glass by Radio Frequency Magnetron Sputtering for Building Integrated Photovoltaic System," j.inst.Korean.electr.electron.eng., vol.22, no.4, pp. 1056-1061, 2018. DOI: 10.7471/ikeee.2018.22.4.1056
3 A. Pareek, S. V. Mohan, "Chapter 1.4 - Graphene and Its Applications in Microbial Electrochemical Technology," Microbial Electrochemical Technology, pp.75-97, 2019.
4 J.-H. Lee, D.-S. Leem, H.-J. Kim, J.-J. Kim, "Effectiveness of p-dopants in an organic hole transporting material," Appl. Phys. Lett., vol.94, no.12, pp.123306, 2009. DOI: 10.1063/1.3107267   DOI
5 J.-H. Lee, D.-S. Leem, J.-J. Kim, "Effect of host organic semiconductors on electrical doping," Organic Electronic. vol.11, no.3, pp.486-489, 2010. DOI: 10.1016/j.orgel.2009.12.002   DOI
6 J.-H. Lee, H.-M. Kim, K.-B. Kim, J.-J. Kim, "Origin of charge generation efficiency of metal oxide p-dopants in organic semiconductors," Organic Electronic. vol.12, no.6, pp.950-954, 2011. DOI: 10.1016/j.orgel.2011.03.008   DOI
7 A. P. Enkvist, J. Dinkel, C. Lin, "Impact of the Financial Crisis on Carbon Economics: Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve," McKinsey & Company, 2010.
8 A. Henemann, "BIPV:Built-in solar energy," Renewable Energy Focus, vol.9, no.6, pp.14.16-19, 2008. DOI: 10.1016/S1471-0846(08)70179-3   DOI
9 I. Ceron, E. Caamano-Martin, F. J. Neila, "'Stateof-the-art' of building integrated photovoltaic products," Renewable Energy, vol.58, pp.127-133, 2013.   DOI
10 A. K. Shukla, K. Sudhakar and P. Baredar, "Recent advancement in BIPV product technologies: A review," Energy and Buildings, vol.140, pp.188-195, 2017. DOI: 10.1016/j.enbuild.2017.02.015   DOI
11 M. Wolf, "Performance analysis of combined heating and photovoltaic power systems for residences," Energy Conversion, vol.16, no.1-2, pp.79-90, 1976. DOI: 10.1016/0013-7480(76)90018-8   DOI
12 L. W. Florschuetz, "Extension of the Hottel-Whiller model to the analysis of combined photovoltaic/thermal flat plate collectors," Solar Energy, vol.22, no.4, pp.361-366, 1979. DOI: 10.1016/0038-092X(79)90190-7   DOI
13 B. Kippelen, and J.-L. Bredas, "Organic photovoltaics," Energy Environ. Sci., vol.2, pp. 251-261, 2009. DOI: 10.1039/B812502N   DOI
14 C. J. Brabec, "Organic photovoltaics: technology and market," Solar Energy Materials & Solar Cells, vol.83, no.2-3, pp.273-292, 2004. DOI: 10.1016/j.solmat.2004.02.030   DOI
15 Y.-W. Su, S.-C. Lan, K.-H. Wei, "Organic photovoltaics," materialstoday, vol.15, no.12, pp.554-562, 2012. DOI: 10.1016/S1369-7021(13)70013-0
16 M. Amado, F. Poggi, "Solar Energy Integration in Urban Planning: GUUD Model," Energy Proc., vol.50, pp.277-284, 2014. DOI: 10.1016/j.egypro.2014.06.034   DOI
17 A. Schüler, C. Roecker, J. Boudaden, P. Oelhafen, J.-L. Scartezzini, "Potential of quarterwave interference stacks for colored thermal solar collectors," Solar Energy, vol.79, no.2, pp.122-130, 2005. DOI: 10.1016/j.solener.2004.12.008   DOI
18 L. L. Kazmerski, "Photovoltaics: A review of cell and module technologies," Renewable and Sustainable Energy Reviews, vol.1, no.1-2, pp.71-170, 1997. DOI: 10.1016/S1364-0321(97)00002-6   DOI