Browse > Article
http://dx.doi.org/10.7471/ikeee.2019.23.1.14

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR  

Lee, Young-Hun (School of Electronics Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of IKEEE / v.23, no.1, 2019 , pp. 14-21 More about this Journal
Abstract
In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.
Keywords
MZR; ZOR; on-board; CRLH; EZR; metamaterial; miniaturization antenna;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Forati, G. W. Hanson, and D. F. Sievenpiper, "An Epsilon-near-zero total-internal-reflection metamaterial antenna," IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 1909-1916, 2015. DOI: 10.1109/TAP.2015.2405559   DOI
2 M. Li, K. M. Luk, L. Ge, and K. Zhang, "Miniaturization of magnetoelectric dipole antenna by using metamaterial loading," IEEE Trans. Antennas Propag., vol. 64, no. 11, pp. 4914-4918, 2016. DOI: 10.1109/TAP.2016.2599176   DOI
3 J.-H. Park, Y.-H. Ryu, and J.-H. Lee, "Muzero resonance antenna," IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1865-1875, 2010.   DOI
4 K. Wei, Z. Zhang, Z. Feng, and M. F. Iskander, "A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns," IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2702-2710, 2012. DOI: 10.1109/TAP.2012.2194643   DOI
5 C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Hoboken, NJ, USA: Wiley, 2005.
6 L. M. Si et al., "A uniplanar triple-band dipole antenna using complementary capacitively loaded loop," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 743-746, 2015. DOI: 10.1109/LAWP.2015.2396907   DOI
7 Young-Hun, Lee "Dual-Band Monopole Antenna Design with Mu-Negative Metamaterial Unit Cell," Journal of Institute of korean Electrical and Electronic Engineers, Vol. 21, No. 3, pp. 219-226, 2017. DOI: 10.7471/ikeee.2017.21.3.219
8 Young-Hun, Lee, "Tri-Band Folded Monopole Antenna Design with MNG Single Cell Metamaterial Loading," Journal of Institute of korean Electrical and Electronic Engineers, Vol. 22, No. 1, pp. 127-135, 2018.
9 M. T. Ghasr, M. J. Horst, M. R. Dvorsky, and R. Zoughi, "Wideband microwave camera for real-time 3-D imaging," IEEE Trans. Antennas Propag., vol. 65, no. 1, pp. 258-268, 2017. DOI: 10.1109/TAP.2016.2630598   DOI
10 Z.-C. Hao, M. He, K. Fan, and G. Luo, "A planar broadband antenna for the E-band gigabyte wireless communication," IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1369-1373, 2017. DOI: 10.1109/TAP.2017.2653768   DOI
11 G. V. Eleftheriades and M. A. Antoniades, "Antenna applications of negative-refractive-index transmission-line (NRI-TL) structures," IET Microw., Antennas Propag., vol. 1, no. 1, pp. 12-22, 2007. DOI: 10.1049/iet-map:20050345   DOI
12 H. Xiaomu, S. Yan, and G. A. E. Vandenbosch, "Wearable button antenna for dual-band WLAN applications with combined on and offbody radiation patterns," IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1384-1387, 2017. DOI: 10.1109/TAP.2017.2653768   DOI
13 D. E. Brocker, Z. H. Jiang, M. D. Gregory, and D. H. Werner, "Miniaturized dual-band folded patch antenna with independent band control utilizing an interdigitated slot loading," IEEE Trans. Antennas Propag., vol. 65, no. 1, pp. 380-384, 2017. DOI: 10.1109/TAP.2016.2627025   DOI
14 J. S. McLean, "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., vol. 44, no. 5, pp. 672-676, 1996. DOI: 10.1109/8.496253   DOI
15 Y. Dong and T. Itoh, "Metamaterial-based antennas," Proc. IEEE, vol. 100, no. 7, pp. 2271-2285, 2012. DOI: 10.1109/JPROC.2012.2187631   DOI
16 R. W. Ziolkowski, P. Jin, and C.-C. Lin, "Metamaterial-inspired engineering of antennas," Proc. IEEE, vol. 99, no. 10, pp. 1720-1731, 2011. DOI: 10.1109/JPROC.2010.2091610   DOI
17 C. Caloz, T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas Propag. Mag., vol. 50, no. 5, pp. 25-39, 2008. DOI: 10.1109/MAP.2008.4674709   DOI
18 K. Saurav, D. Sarkar, and K. V. Srivastava, "CRLH unit-cell loaded multiband printed dipole antenna," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 852-855, 2014. DOI: 10.1109/LAWP.2014.2320918   DOI