Browse > Article
http://dx.doi.org/10.7471/ikeee.2018.22.1.1

UV/O3 Process Time Effect on Electrical Characteristics of Sol-gel Processed CuO Thin Film Transistor  

Lee, Sojeong (School of Electronics Engineering, Kyungpook National University)
Jang, Bongho (School of Electronics Engineering, Kyungpook National University)
Kim, Taegyun (School of Electronics Engineering, Kyungpook National University)
Lee, Won-Yong (School of Electronics Engineering, Kyungpook National University)
Jang, Jaewon (School of Electronics Engineering, Kyungpook National University)
Publication Information
Journal of IKEEE / v.22, no.1, 2018 , pp. 1-5 More about this Journal
Abstract
In this research, sol-gel processed CuO p-type thin film transistors were fabricated with copper (II) acetate monohydrate precursors. After $500^{\circ}C$ annealing process, the deposited thin films were fully converted into CuO. We investigated $UV/O_3$ process time effect on electrical characteristics of sol-gel processed CuO thin film transistors. After 600 sec $UV/O_3$ process, the fabricated CuO thin film transistor delivered field effect mobility in saturation regime of $5{\times}10^{-3}\;cm^2/V{\cdot}s$ and on/off current ratio of ${\sim}10^2$.
Keywords
Sol-gel; CuO; $UV/O_3$; p-type semiconductor; Thin film transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. street, "Thin film transistor," Advanced Materials, vol.21. no.20, pp.2007-2022, 2009.DOI:10.1002/adma.200803211   DOI
2 K. K. Song, D. J. Kim, X. S. Li, T. W. Jun, Y. M. Jeong and J. H. Moon, "Solution processed invisible all-oxide thin film transistors," Journal of Material Chemistry, vol.19, no.46, pp.8881-8886, 2009.DOI:10.1039/B912554J   DOI
3 G. Huang, L. Duan, G. Dong, D. Zhang and Y. Qiu, "High-mobility solution-processed tin oxide thin-film transistors with high-k alumina dielectric working in enhancement mode," ACS Applied Material and Interfaces, 6(23), pp. 20786-20794. 2014.DOI:10.1021/am5050295   DOI
4 K. Nomura, H, Ohta, A. Takagi, T. Kamiya, M. Hirano and H. hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," nature, 432, pp. 488-492, Nov. 2004.DOI:10.1038/nature03090   DOI
5 R. L. Hoffman, B. J. Norris and J. F. Wager, "ZnO-based transparent thin-film transistors," Applied Physics Letters, vol.82, no.5, pp.733-735, 2003.DOI:10.1063/1.1542677   DOI
6 S. C. Wang, C. F. Yeh, C. K. Huang and Y. T. Dai, "Device transfer technology by backside etching (DTBE) for poly-Si thin-film transistors on glass/plastic substrate," Japanese Journal of Applied Physics, vol.42, pp.1044-1046, 2003.DOI: 10.1143/JJAP.42.L1044   DOI
7 Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas and H. N. Alshareef, "Recent developments in p-type Oxide Semiconductor materials and devices," Advanced Materials, vol.28, no.20, pp. 3831-3892, 2016.DOI:10.1002/adma.201503080   DOI
8 B. Balamurugan and B. R. Mehta, "Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation," Thin Solid Films, Vol.396, no.1-2, pp.90-96, 2001.DOI:10.1016/S0040-6090(01)01216-0   DOI
9 C. Gu and J. K. Lee, "Patterning of amorphous-InGaZnO thin-film transistors by stamping of surface-modified polydimethylsiloxane," RCS Advances, no.49, 2016.DOI:10.1039/C6RA06264D
10 H. Tavana, N. Petong, A. Hennig, K. Grundke and A. W. Neumann. "Contact angles and coating thickness," The Journal of Adhesion, vol.81, no.1, 2005.DOI:10.1080/00218460590904435