Browse > Article
http://dx.doi.org/10.7471/ikeee.2017.21.3.297

Free-standing graphene intercalated nanosheets on Si(111)  

Pham, Trung T. (Dept. of Materials Technology, HCMC University of Technology and Education, Vietnam. And Nanotechnology Lab - SHTP Labs, R&D center)
Sporken, Robert (Research Center in Physics of Matter and Radiation (PMR),University of Namur (FUNDP))
Publication Information
Journal of IKEEE / v.21, no.3, 2017 , pp. 297-308 More about this Journal
Abstract
By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.
Keywords
Graphene on Si; porous graphene; graphitic carbon; Si substrate; 3D graphene; electron beamevaporation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Nozaki, K. Nagaoka, K. Hoshi, N. Ohta, and M. Inagaki, "Carbon-coated graphite for anode of Lithium ion rechargeable batteries: Carbon coating conditions and precursors," Journal of Power Sources, vol. 194, no. 1, pp. 486 - 493, 2009.   DOI
2 L.-Z. Bai, D.-L. Zhao, T.-M. Zhang, W.-G. Xie, J.-M. Zhang,and Z.-M. Shen, "A comparative study of electrochemical performance of graphene sheets, expanded graphite and naturalgraphite as anode materials for Lithium-ion batteries," ElectrochimicaActa, vol. 107, pp. 555 - 561, 2013.   DOI
3 J. Tarascon and M. Armand, "Issues and challenges facingrechargeable lithium batteries," Nature, vol. 414, no. 6861, pp. 197-200, 2001.   DOI
4 K. S.Novoselov, A. K. Geim, S. V.Morozov, D. Jiang, Y. Zhang,S. V. Dubonos, I. V. Grigorieva, and A. A.Firsov, "Electric field effect in atomically thin Carbon films," Science, vol. 306, pp. 666-669, 2004.   DOI
5 K. S.Novoselov, A. K. Geim, S. V.Morozov, D. Jiang, I. V. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A.Firsov, "Twodimensional gas of massless dirac fermions in graphene," Nature, vol. 438, pp. 197-200, 2005.   DOI
6 A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar. 2007.   DOI
7 R. R. Nair, P. Blake, A. N. Grigorenko, K. Novoselov, T. J.Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science, vol. 320, p. 1308, 2008.   DOI
8 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,F. Miao, and C. N. Lau, "Superior thermal conductivity ofsinglelayer graphene," Nano Letters, vol. 8, no. 3, pp. 902-907,Feb 2008.   DOI
9 C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of elastic properties and intrinsic strength of monolayergraphene," Science, vol. 321, pp. 385-388, 2008.   DOI
10 J. Wintterlin and M.-L. Bocquet, "Graphene on metal surfaces," Surface Science, vol. 603, no. 10-12, pp. 1841-1852, 2009.   DOI
11 P. ThanhTrung, F. Joucken, J. Campos-Delgado, J.-P.Raskin, B. Hackens, and R. Sporken, "Direct growth of graphitic carbon on Si(111)," Applied Physics Letters, vol. 102, no. 1, pp. 013118-n/a, 2013.   DOI
12 G. Kucinskis, G. Bajars, and J. Kleperis, "Graphene in Lithiumion battery cathode materials: A review," Journal of PowerSources, vol. 240, pp. 66-79, 2013.
13 J. Tang, C. Y. Kang, L. M. Li, W. S. Yan, S. Q. Wai, and P. S. Xu, "Graphene films grown on Si substrate via directdeposition of solidstate carbon atoms," Physica E, vol. 43, no.8,pp. 1415-1418, 2011.   DOI
14 J. Hass, W. A. de Heer, and E. H. Conrad, "The growthand morphology of epitaxial multilayer graphene," Journal ofPhysics: Condensed Matter, vol. 20, no. 32, pp. 323202-n/a, 2008.   DOI
15 X. Li, Y. Hu, J. Liu, A. Lushington, R. Li, and X. Sun, "Structurally tailored graphene nanosheets as Lithium ion batteryanodes: an insight to yield exceptionally high Lithium storageperformance," Nanoscale, vol. 5, pp. 12607-12615, 2013.   DOI
16 S. Pei and H.-M. Cheng, "The reduction of graphene oxide,"Carbon, vol. 50, no. 9, pp. 3210-3228, 2012.   DOI
17 F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, "Structural defects in graphene," ACS Nano, vol. 5, no. 1, pp. 26-41,2011.   DOI
18 Z. Liu, J. Liu, P. Ren, Y.Wu, and P. Xu, "Effects of carbonization and substrate temperature on the growth of 3C-SiC on Siby SSMBE," Applied Surface Science, vol. 254, no. 10, pp. 3207-3210, 2008.   DOI
19 L. Johansson, P.-A. Glans, and N. Hellgren, "A core level andvalence band photoemission study of 6H-SiC(000-1)," SurfaceScience, vol. 405, no. 2-3, pp. 288-297, 1998.
20 T. T. Pham, C. N. Santos, F. Joucken, B. Hackens, J.-P.Raskin, and R. Sporken, "The role of SiC as a diffusion barrier in the formation of graphene on Si(111)," Diamond andRelated Materials, vol. 66, pp. 141-148, 2016.   DOI
21 N. Sharma, D. Oh, H. Abernathy, M. Liu, P. N. First, and T. M. Orlando, "Signatures of epitaxial graphene grown on Siterminated 6H-SiC (0001)," Surface Science, vol. 604, no. 2, pp. 84-88, 2010.   DOI
22 J. Hackley, D. Ali, J. DiPasquale, J. D. Demaree, and C. J. K.Richardson, "Graphitic carbon growth on Si(111) using solidsource molecular beam epitaxy," Applied Physics Letters, vol. 95,pp. 133114-n/a, 2009.   DOI
23 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi,M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene andgraphene layers," Phys. Rev. Lett., vol. 97, pp. 187401-n/a, Oct.2006.   DOI
24 W . A . d e H eer, C . B erger, M . R uan, M . Sprinkle, X. Li, Y. Hu,B. Zhang, J. Hankinson, and E. Conrad, "Large area andstructured epitaxial graphene produced by confinement controlled sublimation of silicon carbide," Proceedings of the National Academy of Sciences, vol. 108, no. 41, pp. 16900-16905, 2011.   DOI
25 O. Kazakova, V. Panchal, and T. L. Burnett, "Epitaxialgraphene and graphene-based devices studied by electricalscanning probe microscopy," Crystals, vol. 3, no. 1, pp. 191-233, 2013.   DOI
26 J. D. Emery, B. Detlefs, H. J. Karmel, L. O. Nyakiti, D. K.Gaskill, M. C. Hersam, J. Zegenhagen, and M. J. Bedzyk, "Chemically resolved interface structure of epitaxial graphene on SiC(0001)," Phys. Rev. Lett., vol. 111, pp. 215501-n/a, Nov. 2013.   DOI
27 K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, "Interaction, growth, and ordering of epitaxial graphene onSiC(0001) surfaces: A comparative photoelectron spectroscopystudy," Phys. Rev. B, vol. 77, pp. 155303-n/a, Apr. 2008.   DOI
28 L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang,K. Leng, Y. Huang, Y. Ma, A. Yu, and Y. Chen, "Porous 3D graphene-based bulk materials with exceptional high surfacearea and excellent conductivity for supercapacitors," ScientificReports, vol. 3, no. 1408, 2013.
29 A. Ouerghi, A. Kahouli, D. Lucot, M. Portail, L. Travers,J. Gierak, J. Penuelas, P. Jegou, A. Shukla, T. Chassagne, and M. Zielinski, "Epitaxial graphene on cubic SiC(111)/Si(111)substrate," Applied Physics Letters, vol. 96, no. 19, pp. 191910-n/a, 2010.   DOI
30 L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim,H. Mizusaki, A. Jorio, L. N. Coelho, R. . Magalhaes-Paniago, and M. A. Pimenta, "General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy," Applied Physics Letters, vol. 88, no. 16, pp. 163106-n/a, 2006.   DOI
31 Y. Wang, Y. Ye, and K. Wu, "Simultaneous observation ofthe triangular and honeycomb structures on highly orientedpyrolytic graphite at room temperature: An STM study," Surface Science, vol. 600, no. 3, pp. 729-734, 2006.   DOI