Browse > Article
http://dx.doi.org/10.7471/ikeee.2013.17.3.324

Practical Implementation of Memristor Emulator Circuit on Printed Circuit Board  

Choi, Jun-Myung (School of Electronics Engineering, Kookmin University)
Sin, SangHak (School of Electronics Engineering, Kookmin University)
Min, Kyeong-Sik (School of Electronics Engineering, Kookmin University)
Publication Information
Journal of IKEEE / v.17, no.3, 2013 , pp. 324-331 More about this Journal
Abstract
In this paper, we implemented memristor emulator circuit on Printed Circuit Board (PCB) and observed the inherent pinched hysteresis characteristic of memristors by measuring the emulator circuit on PCB. The memristor emulator circuit implemented on PCB is composed of simple discrete devices not using any complicated circuit blocks thus we can integrate the memristor emulator circuits in very small layout area on Silicon substrate. The programmable gain amplifier is designed using the proposed memristor emulator circuit and verified that the amplifier's voltage gain can be controlled by programming memristance of the emulator circuit by circuit simulation. Threshold switching is also realized in the proposed emulator circuit thus memristance can remain unchanged when the input voltage applied to the emulator circuit is lower than VREF. The memristor emulator circuit and the programmable gain amplifier using the proposed circuit can be useful in teaching the device operation, functions, characteristics, and applications of memristors to students when thet cannot access to device and fabrication technologies of real memristors.
Keywords
Memristors; Emulator circuit; Programmable gain amplifier; emerging memory; ReRAM;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Shin, J. M. Choi, S. Cho, and K. S. Min, "Small-area and compact CMOS emulator circuit for memristors," submitted to Nano Research Letters, 2013.
2 D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, May 2008.   DOI   ScienceOn
3 D. Ventra, Y. V. Pershin, and L. O. Chua, "Circuit elements with memory: memristors, memcapacitors, and meminductors," Proceedings of the IEEE, vol. 97, no. 10, pp. 1717-1724, Oct. 2009.   DOI   ScienceOn
4 K. H. Jo, C. M. Jung, K. S. Min, and S. M. Kang, "Self-adaptive write circuit for low-power and variation-tolerant memristors," IEEE Trans. Nanotechnology, vol. 9, no. 6, pp. 675-678, Nov. 2010.   DOI   ScienceOn
5 C. M. Jung, J. M. Choi, and K. S. Min, "Two-step write scheme for reducing sneak-path leakage in complementary memristor array," IEEE Trans. Nanotechnology, vol. 11, no. 3, pp. 611-618, May 2012.   DOI   ScienceOn
6 O. Kwon and K. S. Min, "Dataline redundancy circuit using simple shift logic circuit for dual-port 1T-SRAM embedded in display ICs," Journal of Institute of Korean Electrical and Electronics Engineers, vol. 11, no. 4, pp. 129-136, Dec. 2007.   과학기술학회마을
7 Y. V. Pershin and D. Ventra, "Practical approach to programmable analog circuit with memristors," IEEE. Trans. Circuits and Systems, vol. 57, no. 8, pp. 1857-1864, Aug. 2010.   DOI   ScienceOn
8 C. M. Jung, K. H. Jo, and K. S. Min, "SPICE macromodel and CMOS emulator for memristors," Journal of Nanoscience and Nanotechnology, vol. 12, no. 2, pp. 1487-1491, Feb. 2012.   DOI   ScienceOn
9 H. Kim, M. Sah, C. Yang, S. Cho, and L. O. Chua, "Memristor emulator for memristor circuit applications," IEEE Trans. Circuits and Systems, vol. 59, no. 10, pp. 2422-2431, Oct. 2012.   DOI   ScienceOn
10 J. M. Choi, S. H. Shin, S. Cho, and K. S. Min, "CMOS circuit with small area and low complexity for emulation memristive behavior," Collaborate Conference on 3D & Material Research (CC3DMR), Jeju in Korea, June 2013.
11 C. M. Jung, E. S. Lee, and K. S. Min, "Continuous and accurate PCRAM current-voltage model," Journal of Semiconductor Technology and Science, vol. 11, no. 3, pp. 162-168, Sep. 2011.   과학기술학회마을   DOI   ScienceOn
12 T. Tanzawa, Y. Takano, K. Watanabe, and S. Atsumi, "High-voltage transistor scaling circuit techniques for high-density negative-gate channel-erasing nor flash memories," IEEE Journal of Solid-State Circuits, vol. 37, no. 10, pp. 1318-1325, Oct. 2002.   DOI   ScienceOn
13 S. H. Lim and K. H. Park, "An efficient NAND flash file system for flash memory storage," IEEE Trans. Computers, vol. 55, no. 7, pp. 906-912, July 2006.   DOI   ScienceOn
14 S. Kuge, F. Morishita, T. Tsuruda, S. Tomishima, M. Tsukude, T. Yamagata, and K. Arimoto, "SOI-DRAM circuit technologies for low power high speed multigiga scale memories," IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 586-591, Apr. 1996.   DOI   ScienceOn
15 A. Driskill-Smith, D. Apalkov, V. Nikitin, X. Tang, S. Watts, D. Lottis, K. Moon, A. Khvalkovskiy, R. Kawakami, X. Luo, A. Ong, E. Chen, and M. Krounbi, "Latest advances and roadmap for in-plane and perpendicular STT-RAM," IEEE International Memory Workshop, pp. 1-3, Monterey in California, May 2011.
16 X. Q. Wei, L. P. Shi, R. Walia, T. C. Chong, R. Zhao, X. S. Miao, and B. S. Quek, "HSPICE macromodel of PCRAM for binary and multilevel storage," IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 56-62, Jan. 2006.   DOI   ScienceOn
17 S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, "Progress and outlook for MRAM technology," IEEE Trans. Magnetics, vol. 35, no. 5, pp. 2814-2819, Sep. 1999.   DOI   ScienceOn