Browse > Article
http://dx.doi.org/10.5467/JKESS.2011.32.6.640

Earthquake Wave Propagation Using Staggered-grid Finite-difference Method in the Model of the Antarctic Region  

Oh, Ju-Won (Department of Energy Systems Engineering, Seoul National University)
Min, Dong-Joo (Department of Energy Systems Engineering, Seoul National University)
Lee, Ho-Yong (New Ventures & Exploration Group, Korean Ocean Oil Corporation)
Park, Min-Kyu (Division of Polar Earth-System Sciences, Korea Polar Research Institute)
Publication Information
Journal of the Korean earth science society / v.32, no.6, 2011 , pp. 640-653 More about this Journal
Abstract
We simulate the propagation of earthquake waves in the continental margin of Antarctica using the elastic wave modeling algorithm, which is modified to be suitable for acoustic-elastic coupled media and earthquake source. To simulate the various types of earthquake source, the staggered-grid finite-difference method, which is composed of velocity-stress formulae, can be more appropriate to use than the conventional, displacement-based, finite-difference method. We simulate the elastic wave propagation generated by earthquakes combining 3D staggered-grid finite-difference algorithm composed of displacement-velocity-stress formulae with double couple mechanisms for earthquake source. Through numerical tests for left-lateral strike-slip fault, normal fault and reverse fault, we could confirm that the first arrival of P waves at the surface is in a good agreement with the theoretically-predicted results based on the focal mechanism of an earthquake. Numerical results for a model made after the subduction zone in the continental margin of Antarctica showed that earthquake waves, generated by the reverse fault and propagating through the continental crust, the oceanic crust and the ocean, are accurately described.
Keywords
time domain; staggered-grid finite-difference method; elastic wave modeling; earthquake source; Polar region;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Narayan, J.P. and Kumar, S., 2008, A fourth order accurate SH-wave staggered grid finite-difference algorithm with variable grid size and VGR-stress imaging technique. Pure and Applied Geophysics, 165, 271-294.   DOI
2 Reynolds, C.A., 1978, Boundary conditions for the numerical solution of wave propagation problems. Geophysics, 43, 1099-1100.   DOI
3 Silva, H.G., Bezzeghoud, M., Rocha, J.P., Biagi, P.F., Tlemcani, M., Rosa, R.N., Salgueiro da Silva, M.A., Borges, J.E., Caldeira, B., Reis, A.H., and Manso, M., 2011, Seismo-electromagnetic phenomena in the westerm part of the Eurasia-Nubia plate boundary. Natural Hazards and Earth System Sciences, 11, 241-248.   DOI
4 Stein, S. and Michael, W., 2003, An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing, Malden, USA, 498 p.
5 Symons, N.P., Aldridge, D.F., and Haney, M.M., 2006, 3d acoustic and elastic modeling with marmousi2, 76th Annual International Meeting, SEG, Expanded Abstract, 2171-2175.
6 Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51, 889-899.   DOI
7 Yunga, S., Lutikov, A., and Molchanov, O., 2005, Non double couple seismic sources, faults interaction and hypothesis of self-organized criticality. Natural Hazards and Earth System Sciences, 5, 11-15.   DOI
8 Graves, W.R., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86, 1091-1106.
9 Kelly, K.R., Ward, T.W., Treitel, S., and Alford, T.M., 1976, Synthetic seismograms: A finite-difference approach. Geophysics, 53, 1045-1055.
10 Kosloff, D.D. and Baysal, E., 1982, Forward modeling by a Fourier method. Geophysics, 47, 1402-1412.   DOI
11 Lee, H.Y., Lim, S.C., Min, D.J., Kwon, B.D., and Park, M.K., 2009, 2D time-domain acoustic-elastic coupled modeling: A cell-based finite-difference method. Geoscience journal, 13, 407-414.   과학기술학회마을   DOI
12 Levander, A.R., 1988, Fourth-order finite-difference P-SV seismograms. Geophysics, 53, 1425-1436.   DOI
13 Lin, T. and Baker, J., 2011, Probabilistic seismic hazard deaggregation of ground motion prediction models. 5th International Conference on Earthquake Geotechnical Engineering(5ICEGE), 1-12.
14 Marfurt, K.J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equation. Geophysics, 49, 533-549.   DOI
15 Min, D.J., Shin, C.S., and Yoo, H.S., 2004, Free-surface boundary condition in finite-difference elastic wave modeling. Bulletin of the Seismological Society of America, 94, 237-250.   DOI
16 Moczo, P., Kristek, J., and Bystricky, E., 2000, Stability and grid dispersion of the P-SV 4th-order staggered-grid finite-difference schemes. Studia geoph et geodaet, 44, 381-402.   DOI
17 Mussett, E.A. and Khan, M.A., 2000, Looking into the Earth: An introduction to geological geophysics. Cambridge University Press, NY, USA, 470 p.
18 양준모, 이희순, 오석훈, 2009, 청양 지자기관측소에서 획득된 지자기전달함수와 분극값의 시간변동성에 대한 연구. 한국지구과학회, 30, 824-833.   과학기술학회마을   DOI   ScienceOn
19 오석훈, 2009, 안동지진(2009년 5월 2일) 발생 기간 지자기장 자료의 변동성 분석. 한국지구과학회, 30, 683-691.   과학기술학회마을   DOI   ScienceOn
20 조창수, 이희일, 2009, 회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용. 지구물리와 물리탐사, 12, 183-191.   과학기술학회마을
21 최윤석, 2007, 탄성파 및 음향-탄성파 결합 파동방정식 유한요소 모델링 기법을 이용한 주파수 영역 파형역산. 서울대학교 공학박사학위논문, 118 p.
22 Adamova, P. and Sileny, J., 2010, Non-double-couple earthquake mechanism as an artofact of the point-source approach applied to a finite-extent focus. Bulletin of the Seismological Society of America, 100, 447-557.   DOI
23 Aki, K. and Richards, G.P., 1980, Quantitative seismology. University Science Books Sausalito, California, USA, 700 p.
24 Clayton, R. and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 67, 1529-1540.
25 Fornberg, B., 1987, The pseudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics, 52, 483-501.   DOI
26 Fulbert, F., Meister, C., Hauf, S., Bonnes, U., Dziendziel, P., and Hoffmann, D.H., 2011, The Darmstadt VLF radiophysical station VADAR for the detection of possible earthquake precursors. EGU General Assembly, 13, p. 2713.
27 Gaspar-Escibano, J.M. and Iturrioz, T., 2011, Communicating earthquake risk: Mapped parameters and cartographic representation. Natural Hazards and Earth System Sciences, 11, 359-366.   DOI
28 Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49, 1933-1942.   DOI
29 백진주, 경재복, 최호선, 2011, 최근 5년간 한반도 중서부 지역에서 발생한 지진의 진원 특성 분석. 한국지구과학회, 32, 161-169.   과학기술학회마을   DOI   ScienceOn
30 신성렬, 신창수, 서정희, 1997, Staggered Grid를 이용한 유한차분법 탄성파 모델링. 한국자원공학회지, 34, 168-174.