Browse > Article
http://dx.doi.org/10.5467/JKESS.2008.29.3.255

Late Cretaceous to Early Tertiary Paleostress from Healed Microcracks of Cretaceous Granites in Goheung Area, Jeonnam  

Kang, Seong-Seung (Research Institute of Basic Sciences, Sunchon National University)
Lim, Chel-Gi (Suncheon Palma Middle School)
Sim, Hye-Min (Science Education Institute for the Gifted, Sunchon National University)
Yoon, Jae-Hong (Science Education Institute for the Gifted, Sunchon National University)
Kim, Cheong-Bin (Department of Science Education, Sunchon National University)
Publication Information
Journal of the Korean earth science society / v.29, no.3, 2008 , pp. 255-262 More about this Journal
Abstract
Late Cretaceous to early Tertiary paleostress was evaluated by analyzing the healed microcracks in the Cretaceous granite of the Goheung area, south Korea. Healed microcracks in five granite samples (GH-1, GH-3, GH-4, GH-5, GH-8) were investigated and measured according to direction. The directions of maximum horizontal principal stress in GH-1, GH-3, and GH-4 are dominantly $N60^{\circ}W\;and\;N70^{\circ}E,\;N20^{\circ}W\;and\;N50^{\circ}W$, while minor directions are N-S and $N30^{\circ}E$. In GH-5 and GH-8, $N40^{\circ}E\;and\;N10^{\circ}E$ are the most dominant directions, while $N40^{\circ}W$ is the minor direction. Thus overall, the most dominant directions of healed microcracks in the study area are oriented $N60^{\circ}W$, while minor directions are oriented $N20^{\circ}W,\;N20^{\circ}E\;and\;N70^{\circ}E$, essentially NE. Combining the paleostress results of this study with other studies, the direction of the maximum horizontal principal stress in the study area during the late Cretaceous to the early Tertiary should perhaps be changed WNW to NE. The reason for this is thought to be the complex tectonic movements which occurred in northeast Asia at that time.
Keywords
Goheung; Cretaceous; healed microcrack paleostress; maximum horizontal principal stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 이준동, 김인수, 윤선, 상기남, 김영화, 1993, 언양지역을 중심으로 한 양산단층에 관한 연구: 특히 파쇄작용과 자기 비등방성 고찰을 중심으로. 지질학회지, 29, 128-144
2 최범영, 황재하, 고희재, 이병주, 김정찬, 최현일, 기원서, 김유봉, 송교영, 최영섭, 2002, 1:250,000 목포.여수 도폭 지질보고서. 한국지질자원연구원, 1-45
3 Boullier, A.M., 1999, Fluid inclusions: tectonic indicators. Journal of Structural Geology, 21, 1229-1235   DOI   ScienceOn
4 Chough, S.K. and Barg, E., 1987, Tectonic history of Ulleung basin margin, East Sea (Sea of Japan). Geology, 15, 45-48   DOI
5 Kranz, R.L., 1983, Microcracks in rocks: A review. Tectonophysics, 100, 449-480   DOI   ScienceOn
6 Lespinasse, M. and Pecher, A., 1986, Microfracturing and regional stress field: A study of the preferred orientations of fluid-inclusion planes in a granite from the Massif Central, France. Journal of Structural Geology, 8, 169-180   DOI   ScienceOn
7 Takeshita, T., 1995, Dynamic analysis of deformed quartz grains from the folded Middle Miocene Momonoki Subgroup of central Japan: Origin of healed microcracks. Tectonophysics, 245, 277-297   DOI   ScienceOn
8 박상욱, 1994, 경상분지 남동부의 화강암체내에 발달한 미세균열에 대한 연구. 강원대학교 석사학위논문, 79 p
9 Jang, B.A., 1992, Characteristics of healed microcracks in granite based on numerical modeling. The Journal of the Geological Society of Korea, 28, 458-470
10 조계복, 1998, 전남 승주-보성.벌교-도양 일대의 변성암류 의 변성작용에 대한 연구. 전남대학교 석사학위논문, 68 p
11 Pecher A., Lespinasse M., and Leroy J., 1985, Relations between fluid inclusion trails and regional stress field: A tool for fluid chronology - an example of an intragranitic uranium ore deposit (northwest Massif Central, France). Lithos, 18, 229-237   DOI   ScienceOn
12 Carlson, S.R. and Wang, H.F., 1986, Microcrack porosity and in situ stress in Illinois borehole UPH-3. Journal of Geophysical Research, 91, 10421-10428   DOI
13 Kowallis, B.J., Wang H.F., and Jang B.A., 1987, Healed microcrack orientations in granite from Illinois borehole UPH-3 and their relationship to the rock's stress history. Tectonophysics, 135, 297-306   DOI   ScienceOn
14 Simmons, G. and Richter, D., 1976, Microcracks in rocks. In Sterns, R.J.C. (ed.), The Physics and Chemistry of Minerals and Rocks. Wieley-Interscience, N.Y., USA, 105-137
15 조석희, 2000, 전남 고흥 북부 일대에 분포하는 백악기 퇴 적분지의 소환경에 관한 연구. 전남대학교 박사학위논문, 159 p
16 정해식, 장보안, 2004, 소백산 육괴 동북부 영주 화강암 내 의 아문미세균열 및 유체포유물을 이용한 중생대 고응력장 연구. 지질학회지, 40, 179-190
17 장보안, 김정애, 1996, 월악산, 속리산 일대의 화강암체내에 분포하는 아문미세균열 및 유체포유물에 의한 중생대 백악기 고응력장. 지질학회지, 32, 291-301
18 Brantley, S.L., Evans, B., Hickman, S.H., and Crerar, D.A., 1990, Healing in microcracks in quartz: Implications for fluid flow. Geology, 18, 136-139   DOI
19 Norton, D.L., 1982, Fluid and heat transport phenomena typical of copper-bearing pluton environments. In Titley, S.R. (ed.), Advances in geology of the porphyry copper deposit. University of Arizona Press, Tucson, USA, 560 p
20 장보안, 정해식, 2005, 마산 및 양산 일대의 백악기 화강암 류의 아문미세균열과 유체포유물 연구를 통한 백악기 및 신생대 고응력장 분석. 지질학회지, 41, 59-72
21 윤성효, 1988, 화산 환상화성암복합체의 발달사 및 콜드른 구조. 지질학회지, 24, 267-288
22 박배영, 신상은, 조계복, 2004, 전라남도 고흥 북북지역에 분포하는 편마암류의 변성작용에 관한 연구. 한국지구과학회지, 25, 443-473
23 Knapp, R.B. and Knight, J., 1977, Differential thermal expansion of pore fluids: Fracture propagation and micro-earthquake production in hot pluton environments. Journal of Geophysical Research, 82, 2515-2522   DOI
24 박영석, 김정빈, 윤정한, 안건상, 1997, 고흥지역에 분포하 는 백악기 심성암류의 지질시대와 암석화학적 연구. 한국지구과학회지, 18, 70-83
25 Plumb, R., Engelder, T., and Yale, D., 1984, Near-surface in situ stress: 3. Correlation with microcrack fabric within the New Hampshire granite. Journal of Geophysical Research, 89, 9350-9364   DOI
26 Jang, B.A., Wang, H.F., Ren, X., and Kowallis, B.J., 1989, Precambrian paleostress from microcracks and fluid inclusions in the Wolf River batholith of central Wisconsin. Geological Society of America Bulletin, 101, 1457-1464   DOI
27 Ren, X., Kowallis, B.J., and Best, M.G., 1989, Paleostress history of the Basin and Range province in western Utah and eastern Nevada from healed microfracture orientations in granites. Geology, 17, 487-490   DOI
28 Laubach, S.E., 1989, Paleostress directions from the preferred orientation of fluid-inclusion planes (healed mcrofractures) in sandstone, East Texas basin, U.S.A. Journal of Structural Geology, 11, 603-611   DOI   ScienceOn