Browse > Article
http://dx.doi.org/10.5660/WTS.2015.4.2.111

Moisture Sorption Isotherms of Four Echinochloa Species Seeds  

Lee, Yong Ho (Seedbank of Wild resource plant, Korea University)
Byun, Ji Young (Department of Plant Life and Environmental Science/Institute of Ecological Plant Science, Hankyong National University)
Na, Chae Sun (Department of Plant Life and Environmental Science/Institute of Ecological Plant Science, Hankyong National University)
Kim, Tae Wan (Department of Plant Life and Environmental Science/Institute of Ecological Plant Science, Hankyong National University)
Kim, Jeong-Gyu (Seedbank of Wild resource plant, Korea University)
Hong, Sun Hee (Seedbank of Wild resource plant, Korea University)
Publication Information
Weed & Turfgrass Science / v.4, no.2, 2015 , pp. 111-117 More about this Journal
Abstract
The equilibrium moisture contents (EMC) in seeds of four Echinochloa (E. crus-galli var. crus-galli, E. crus-galli var, echinata, E. crus-galli var. praticola, E. esculenta) were measured at $20^{\circ}C$ with equilibration over a series of lithium chloride solutions with relative humidities ranging from 0.11 to 0.8 to determine sorption isotherms and safe storage relative humidity. Standard seed sorption isotherm models i.e. modified Henderson, modified Chung-Pfost, modified Halsey, modified Oswin and Guggenheim-Anderson-deBoer (GAB) equations were adopted to evaluate the goodness of fit to sorption isotherms. This study indicated that EMC of seeds was significantly different in four Echinochloa species at various relative humidity. The modified Oswin equations for E. crus-galli var. crou-galli, E. crus-galli var, echinata, E. esculenta and GAB equation for E. crus-galli var. praticola were adequate models for the EMC data. Seeds of four Echinochloa species have monolayer moisture contents when stored at RH < 0.1. These results show that seed moisture isotherm model should be selected according to genetic variation.
Keywords
Echinochloa; Equilibrium moisture content; Model; Seed; Sorption isotherm;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Fadeyibi, A., Osunde, Z.D., Usaini, M.S., Idah, P.A. and Balami, A.A. 2012. Evaluating monolayer moisture content of rubber seed using BET and GAB sorption equations. Int. J. Farming Allied Sci. 1:72-76.
2 Gold, K. and Hay, F. 2014. Equilibrating seeds to specific moisture levels. Technical Information Sheet_09, Royal Botanic Gardens Kew, UK.
3 Gold, K. and Manger, K. 2008. Measuring seed moisture status using a hygrometer. Technical Information Sheet_04, Royal Botanic Gardens Kew, UK.
4 Hamilton, M.B. 1994. Ex situ conservation of wild plant species: time to reassess the genetic assumptions and implications of seed banks. Conservation Biol. 8:39-49.   DOI
5 Iglesias, H. and Chirife, J. 1976. BET monolayer values in dehydrated foods and food components. Lebensmitt Wissensch Technol. 9:107-113.
6 Kang, B.H. 2008. An illustrated ecology books of Korean medicinal plant resources, Geobook, Seoul, Korea.
7 Kim, K.J., Kim, Y.D., Kim, J.H., Park, S.J., Park, J.W., et al. 2008. Phylogenetic classification of Korean vascular flora according to the recent APG classification system. Kor. J. Plant Taxon. 38:197-222. (In Korean)
8 Labuza, T., Kaanane, A. and Chen, J. 1985. Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. J. Food Sci. 50:385-392.
9 Lee, J.R., Kim, C.S. and Lee, I.Y. 2013. Identification of Echinochloa oryzicola (Vasinger) Vasinger and E. oryzoides (Ard.) Fritsch in Korea. Kor. J. Plant. Taxon. 43:56-62. (In Korean)   DOI
10 Lee, Y.S., Yoon, H.S., Lee, S.Y., Lee, J.K., Park, C.S., et al. 2012a. Nutritional components and biological activities of barnyard millets (Echinochloa spp.). Kor. J. Food Nutr. 25:644-649. (In Korean)   DOI   ScienceOn
11 Lee, Y.S., Yoon, H.S., Lee, S.Y., Lee, J.K., Park, C.S., et al. 2012b. Characteristics of wheat flour dough and noodles with barnyard millet (Echinochloa spp.). Kor. J. Food Nutr. 25:706-712. (In Korean)   DOI
12 Lingington, S. and Manger, K. 2014. Seed bank design: seed drying rooms. Technical Information Sheet_11, Royal Botanic Gardens Kew, UK.
13 Menkov, N.D. 2000. Moisture sorption isotherms of lentil seeds at several temperatures. J. Food Eng. 44:205-211.   DOI
14 Park, J.Y., Kim, K.W., Kim, J.Y., Lee, B.T., Lee, J.S., et al. 2008. Enhanced phytoremediation by Echinochloa frumentacea using PSM and EDTA in an arsenic contaminated soil. The International Symposia on Geoscience Resources and Environments of Asian Terranes, 4th IGCP. pp. 487-488.
15 Pfost, H., Maurer, S., Chung, D. and Milliken, G.A. 1976. Summarizing and reporting equilibrium moisture data for grains. ASAE Paper. No. 76-3520, ASAE, Michigan, USA.
16 Probert, R.J. 2003. Seed viability under ambient conditions, and the importance of drying. Seed conservation: turning science into practice, Royal Botanic Gardens Kew, London, UK.
17 Rockland, L.B. and Stewart, G.F. 2013. Water activity: influences on food quality: a treatise on the influence of bound and free water on the quality and stability of foods and other natural products, Academic Press, New York, USA.
18 Sun, D.W. 1999. Comparison and selection of EMC/ERH isotherm equations for rice. J. Stored Prod. Res. 35:249-264.   DOI
19 Schoen, D.J. and Brown, A.H. 2001. The conservation of wild plant species in seed banks attention to both taxonomic coverage and population biology will improve the role of seed banks as conservation tools. Biosci. 51:960-966.   DOI
20 Soleimani, M. and Shahedi, M. 2006. Investigation of sorption isotherm curves for corn seed (Three way cross 647 and single cross 704). J. Sci. Tech. Agri. Nat. Res. 10:217-231.
21 Thompson, T.L., Peart, R.M. and Foster, G.H. 1968. Mathematical simulation of corn drying- a new model. Trans. Am. Soc. Agri. Eng. 11:582-586.   DOI
22 Vertucci, C.W. and Roos, E.E. 1993. Theoretical basis of protocols for seed storage II. The influence of temperature on optimal moisture levels. Seed Sci. Res. 3:201-213.
23 Walters, H. and Hill, L.M. 1998. Water sorption isotherms of seeds from ultradry experiments Seed Sci. Res. 8:69-73.
24 Aviara, N.A. and Ajibola, O.O. 2002. Thermodynamics of moisture sorption in melon seed and cassava. J. Food Eng. 55:107-113.   DOI
25 Acenas, X.S., Nunez, J.P.P., Seo, P.D., Venecio U. Ultra, Jr. and Lee, S.C. 2013. Mixing pyroligneous acids with herbicides to control barnyardgrass (Echinochloa crus-galli). Weed Turf. Sci. 2:164-169.   DOI
26 Al-Muhtaseb, A., McMinn, W. and Magee, T. 2002. Moisture sorption isotherm characteristics of food products:a review. Food Bioproducts Proc. 80:118-128.   DOI
27 ASABE. 2007. ASAE D245.6: Moisture relationships of plant based agricultural product. ASABE Standards. American Society of Agricultural and Biological Engineers, Michigan, USA.
28 Brunauer, S., Emmett, P.H. and Teller, E. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60:309-319.   DOI
29 Chen, C.C. 1990. Modification of oswin EMC/ERH equation. Jour. Agri. Res. China 39:367-376.
30 Chen, C.C. and Morey, R.V. 1988. Comparison of four EMC/ERH equations. American Society of Agricultural Engineers, USA. p. 22.
31 Chen, C. 2003. Moisture sorption isotherms of pea seeds. J. Food Eng. 58:45-51.   DOI
32 Ellis, R., Hong, T. and Roberts, E. 1989. A comparison of the low moisture content limit to the logarithmic relation between seed moisture and longevity in twelve species. Ann. Bot. 64:601-611.
33 Ellis, R., Hong, T., Roberts, E. and Tao, K.L. 1990. Low moisture content limits to relations between seed longevity and moisture. Ann. Bot. 65:493-504.   DOI