Browse > Article
http://dx.doi.org/10.5660/KJWS.2012.32.3.159

Research Trends in Hormetic Stimulation Effects of Herbicides in Plants  

Pyon, Jong-Yeong (ReSEAT Program, Korea Institute of Science and Technology Information)
Uddin, Md. Romij (Department of Crop Science, Chungnam National University)
Kim, Sang-Woo (ReSEAT Program, Korea Institute of Science and Technology Information)
Park, Kee-Woong (Department of Crop Science, Chungnam National University)
Publication Information
Korean Journal of Weed Science / v.32, no.3, 2012 , pp. 159-169 More about this Journal
Abstract
Hormesis is a dose-response phenomenon that is characterized by low-dose stimulation and high-dose inhibition. This biphasic dose-responses have had a long and extensive history in the fields of chemical toxicology, radiation biology and pharmacology. Hormesis has been found from bacteria, fungi, plants and animals, but hormesis in plants has received relatively little attention. Thus principles, occurrence, factors affecting the expression of hormetic responses, and their mechanisms in plants induced by herbicides are reviewed to provide the potentials for crop enhancement. Bromacil, bromoxynil, chloramben, propachlor, terbacil, EPTC, MSMA, and glyphosate at low doses showed stimulatory response in growth. Subtoxic dose of glyphosate increased sucrose content in sugarcane that is used worldwide in sugarcane production. Low dose of protoporphyrinogen-inhibiting herbicides induced increased pathogen defence, and low dose of triazine herbicides improved nitrogen metabolism and increased protein content in some crops. Further researches on potential benefits and risks of hormesis and its mechanism are needed for application of crop enhancement in agriculture.
Keywords
biphasic dose-response; growth stimulation; herbicide; hormesis; plants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wagner, R., M. Kogan, and M. Parada. 2003. Phytotoxic activity of root absorbed glyphosate in corn seedlings. Weed Biol. and Manage. 3:228-232.   DOI
2 Wiedman, S. J. and A. P. Appleby. 1972. Plant growth stimulation by sublethal concentrations of herbicides. Weed Res. 12:65-74.   DOI
3 Parson, P. A. 2003. Metabolic efficiency in response to environmental agents predicts hormesis and invalidates the linear No-Threshold Premise:Ionizing radiation as a case study. Crit. Rev. Toxicol. 33: 443-450.   DOI
4 Pulver, E. L. and S. K. Ries. 1973. Action of simazine in increasing plant protein content. Weed Sci. 21:233-237.
5 Rich, D. 2008. Producers look for yield increases from fungicides and seed treatments. High Plains Journal. 03/24.
6 Ries, S. K., H. Chmiel, D. R. Dilley, and P. Filner. 1967. The increase in nitrate reductase activity and protein content of plants treated with simazine. Proc. National Academy of Sci. 58:526-532.   DOI
7 Streibig, J. C. 1980. Models for curve-fitting herbicide dose response data, Acta Agriculture Scandinavia 30:59-64   DOI
8 Ries, S. K., O. Moreno, W. F. Meggitt, C. J. Schweizer, S. A. Ashkar. 1970. Wheat seed protein: Chemical influence on and relationship to subsequent growth and yield in Michigan and Mexico. Agron. J. 62:746-751.   DOI
9 Rowntree, J. K., K. F. Lawton, F. J. Rumsey, and E. Sheffield. 2003. Exposure of asulox inhibits the growth of mosses. Annals of Botany 92:547-556.   DOI
10 Southam, C. M., and J. Ehrlich. 1943. Effects of extracts of western red ceder heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517-524.
11 Su, L. Y., A. D. Cruz, P. H. Moore, and A. Maretzki. 1992. The relationship of glyphosate treatment to sugar metabolism in sugarcane:New physiological insights. J. Plant Physiol. 140:168-172.   DOI
12 Velini, E. D., E. Alves, M. C. Godoy, D. K. Meschede, R. T. Souza, and S. O. Duke. 2008. Glyphosate at low doses can stimulate plant growth. Pest Manage. Sci. 64:489-496.   DOI
13 Liu, L., Z. K. Punja, and J. E. Rahe. 1997. Altered root exudation and suppression of induced lignification as mechanisms of predisposition by glyphosate of bean root to colonization by Pythium spp. Physiol. Mol. Pathol. 51:111-127.   DOI
14 Maretzki, A., M. Thom, and P. H. Moore. 1976. Growth patterns and carbohydrate distribution in sugarcane plants treated with an amine salt of glyphosate. Hawaiian Planters' Rec. 59:21-32.
15 Marks, G. C. and R. Cerra. 1991. Effects of propazine and chlorthal dimethyl on Phytophthora cinnamomi root disease of Pinus radiata seedlings and associated soil microflora. Soil Biology and Biochem. 23:157-164.   DOI
16 Moore, D. J. 2000. Chemical hormesis in cell growth: A molecular target at the cell surface. J. of Applied Toxicol. 20:157-163.   DOI
17 Mathers, J., J. A. Fraser, M. McMahon, R. D. Saunders, J. D. Hayes, and L. I. McLellan. 2004. Antioxidant and cytoprotective responses to redox stress. Biochem Soc. Symp. 71:157-176.   DOI
18 Mattson, M. P., S. Maudsley, B. Martin. 2004. A neural signaling triumvirate that influences aging and age-related disease:insulin/IGF-1, BDNF and serotonin. Aging Res. Rev. 3:445-464.   DOI
19 McDonald, L., T. Morgan, and P. Jackson. 2001. The effect of ripeners on the CCS or 47 sugarcane varieties in the burdekin. Proceeding Conf. Australian Society Sugar Cane Technologists 23:102-108.
20 Nelson, A., K. A. Renner, and R. Hammerschmidt. 2002. Effects of protoporphrinogen oxidase inhibitors on soybean response, Sclerotinia sclerotiorum disease development, and phytoalexin production by soybean. Weed Technol. 16:353-359.   DOI
21 Nickell, L. G. 1982. Plant growth regulators in the sugarcane industry. In:McLaren, J. S. (ed.): Chemical manipulation of crop growth and development, pp. 167-189. Butterworth, London.
22 Davies, J., J. L. Honegger, F. G. Tencalla, G. Meregalli, P. Brain, J. R. Newman, and H. F. Pitchford. 2003. Herbicide risk assessment for non-target aquatic plants: sulfosulfuron - a case study. Pest Manage. Sci. 59:231-237.   DOI
23 Davis, J. M., and D. J. Svendsgaard. 1992. U-shaped dose-response curves:curves:their occurrence and implications for risk assessment. J. Toxicol. Environ. Health 30:71-83.
24 DeDatta, S. K., W. M. Obcemea, P. R. Jana. 1972. Protein content of rice grain as affected by nitrogen fertilizer and some triazines and substituted ureas. Agronomy J. 64:785-791.   DOI
25 El-Shahawy, T. A., F. A. A. Sharara. 2011. Hormesis influence of glyphosate in between increasing growth, yield and controlling weeds in faba bean. J. of American Sci. 7:139-143.
26 Duke, S. O., A. M. Rimando, P. F. Pace, K. N. Reddy, and R. J. Smeda. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 51:340-344.   DOI
27 Duke, S. O., N. Cedergreen, E. D. Velin, and R. G. Belz. 2006. Hormesis:Is it an important factor in herbicide use and allelopathy?. Outlooks on Pest Manage. 17:29-33.
28 El-Shahawy, T. A., F. A. A. Sharara. 2011. Hormetic effect of glyphosate on wheat and associated weeds. International J. of Academic Research 3(3):520-524.
29 Hilton, H. W., R. V. Osgood, and A. Maretzki. 1980. Some aspects of Mon 8000 (glyphosate) as a sugarcane ripener to replace Polaris. Proc. Int. Soc. Sugarcane Technol. 17:652-661.
30 Hodges, R. E. 1992. Vegetative growth and sporulation of Bipolaris sorokiniana on infected leaves of Poa pratensis exposed to postemergence herbicides. Canadian Journal of Botany 70:568-570.   DOI
31 Kovalchuck, J., Filkowski, K. Smith, and O. Kovalchuck. 2003. Reactive oxygen species stimulate homologous recombination in plants. Plant Cell. Environ. 26:1531-1539.   DOI
32 Calabrese, E. J. 2002. Hormesis:changing view of the dose response, a personal account of the history and current status. Mut. Res. 551:181-189.
33 Calabrese, E. J. 2005. Paradigm lost, paradigm found: The reemergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ. Pollution. 138:378-411.   DOI
34 Cedergreen, N., N. Ritz, and J. C. Streibig. 2005. Improved empirical models describing hormesis. Environ. Toxicol. & Chem. 24:3166-3172.   DOI
35 Calabrese, E. J. and L. A. Baldwin. 2001. Hormesis: U-shaped dose responses and their centrality in toxicology. Trends in pharmacological sciences. 22:285-291.   DOI
36 Calabrese, E. J. and R. B. Blain. 2005. The occurrence of hormetic responses in the toxicological literature, the hormesis database:overview. Toxicol. & Applied Pharmacol. 202:289-301.   DOI
37 Carson, M. L., W. E. Arnold, and P. E. Todt. 1991. Prediposition of soybean seedlings to fusarium root rot with trifluralin. Plant Disease 75:342-347.   DOI
38 Cedergreen, N., J. C. Streibig, and N. H. Spliid. 2004. Species specific sensitivity of aquatic macrophytes towards herbicides. Environ. Toxicol. Environ. Safety 58:314-323.   DOI
39 Cedergreen, N., J. C. Streibig, P. Kudsk, S. K. Mathiassen, S. O. Duke. 2007. The occurrence of hormesis in plants and algae. Dose response 5(2): 150-162.   DOI
40 Dalley, C. D. and E. P. Richard. 2010. Herbicides as ripeners for sugarcane. Weed Science 58:329-333.   DOI
41 Dann, E. K, B. W. Diers, and R. Hammerschmidt. 1999. Suppression of Sclerotinia stem rot of soybean by latofen herbicide treatment. Phytopathology 89: 698-602.
42 Appleby, A. P. 1998. The practical implications of hormetic effects of herbicides on plants. Human & Experimental Toxicology 17:270-271.   DOI
43 Ahsan, N. D. G. Lee, and K. Lee. 2008. Glyphosateinduced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol. & Biochem. 46:1062-1070.   DOI   ScienceOn
44 Allen, H. P., R. C. Brian, J. E. Downes, G. C. Mees, and R. H. Springett. 1978. Selective herbicides. In: Peacock, F. C (ed). Fifty years of Agricultural Research (1928-1978), pp. 35-41. The Kynoch Press.
45 Allender, W. J. 1997. Effect of trifluoperazine and verapamil on herbicide stimulated growth of cotton. J. Plant Nutrition 20:69-80.   DOI
46 Belz, R. G., N. Cedergreen, and S. O. Duke. 2011. Herbicide hormesis - can it be useful in crop production? Weed Research 51:321-332.   DOI
47 Brain, R. A., C. J. Wilson, D. J. Johnson, H. Sanderson, K. Bestari, M. L. Hanson, P. K. Sibley, K. R. Solomon. 2005. Effects of mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microsoms. Environmental Pollution 138:425-442.   DOI