Browse > Article
http://dx.doi.org/10.5660/KJWS.2010.30.3.225

Expression Site of Protoporphyrinogen Oxidase Influences on Herbicide Resistance in Transgenic Rice  

Jung, Sun-Yo (School of Life Sciences and Biotechnology, Kyungpook National University)
Publication Information
Korean Journal of Weed Science / v.30, no.3, 2010 , pp. 225-232 More about this Journal
Abstract
The effect of Protox expression site on herbicidal resistance was investigated in wild-type and transgenic rice plants imposed by peroxidizing herbicide oxyfluorfen. The transgenic rice systems involved the plastidal expression of Arabidopsis protoporphyrinogen oxidase (Protox; AP line) and the dual expression of Myxococcus xanthus Protox in chloroplasts and mitochondria (TTS line). The oxyfluorfen-treated TTS4 line showed the lower levels of cellular leakage and malonyldialdehyde and the sustained capacity of 5-aminolevulinic acid synthesis, compared to the oxyfluorfen-treated AP and wild-type lines. During oxyfluorfen action, the TTS4 line had greater herbicide resistance than the AP1 line, indicating that the dual expression of M. xanthus Protox in chloroplasts and mitochondria prevented the accumulation of photodynamic protoporphyrin IX more effectively than the expression of Arabidopsis Protox only in chloroplasts. These results suggest that the ectopic expression of Protox in mitochondria greatly contributes to the herbicidal resistance in rice plants.
Keywords
5-aminolevulinic acid; herbicide resistance; oxidative stress; oxyfluorfen; protoporphyrinogen oxidase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Molina, A., A. Volrath, D. Guyer, K. Maleck, J. Ryals and E. Ward. 1999. Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J. 17:667-678.   DOI
2 Papenbrock, J., H. P. Mock, E. Kruse and B. Grimm. 1999. Expression studies in tetrapyrrole biosynthesis : inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic pho-toperiods. Planta 208:264-273.   DOI
3 Reinbothe, S., C. Reinbothe, K. Apel and N. Lebedev. 1996. Evolution of chlorophyll biosynthesis-the challenge to survive photooxidation. Cell 86: 703-705.   DOI
4 Smith, A. G., O. Marsh and G. H. Elder. 1993. Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem. J. 292:503-508.
5 von Wettstein, D., S. Gough and C. G. Kannangara. 1995. Chlorophyll biosynthesis. Plant Cell 7: 1039-1057.   DOI
6 Warabi, E., K. Usui, Y. Tanaka and H. Matsumoto. 2001. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. Pestic. Manag. Sci. 57:743-748.   DOI
7 Yao, N., and J. T. Greenberg. 2006. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18:397-411.   DOI
8 Kouji, H., T. Masuda and S. Matsunaka. 1988. Action mechanism of diphenyl ether herbicides : light-dependent $O_2$ consumption in diphenylether-treated tobacco cell homogenate. J. Pestic. Sci. 13:495-499.   DOI
9 Lee, H. J., and S. O. Duke. 1993. Protoporphyrinogen IX-oxidizing activities involved in the mode of action of peroxidizing herbicides. Agric. Food Chem. 42:2610-2618.
10 Lee, H. J., M. V. Duke, J. H. Birk, M. Yamamoto and S. O. Duke. 1995. Biochemical and physiological effects of benzheterocycles and related compounds. J. Agric. Food Chem. 43:2722-2727.   DOI
11 Matringe, M., J. M. Camadro, M. A. Block, J. Joyard, R. Scalla, P. Labbe and R. Douce. 1992. Localization within the chloroplasts of protoporphyrinogen oxidase the target enzyme for diphenylether-like herbicides. J. Biol. Chem. 267:4646-4651.
12 Lee, H. J., Y. I. Kuk and S. Jung. 2003. Alleviation of membrane-associated herbicidal activity induced by acifluorfen-methyl with reductants. Kor. J. Weed Sci. 23:351-358.   과학기술학회마을
13 Lermontova, I., and B. Grimm. 2000. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75-83.   DOI
14 Lydon, J., and S. O. Duke. 1988. Porphyrin synthesis is required for photobleaching activity of the p-nitrosubstituted diphenyl ether herbicides. Pestic. Biochem. Physiol. 31:74-83.   DOI
15 Mock, H. P., W. Heller, A. Molina, B. Neubohn, H. Sandermann and B. Grimm. 1999. Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defence responses conferring increased resistance to tobacco mosaic virus. J. Biol. Chem. 274:4231-4238.   DOI
16 Jacobs, J. M., and N. J. Jacobs. 1987. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem. J. 244:219-224.
17 Jacobs, J. M., and N. J. Jacobs. 1993. Porphyrinogen accumulation and export by isolated barley (Hordeum vulgare L.) plastids : effect of diphenyl ether herbicides. Plant Physiol. 101:1181-1187.
18 Jacobs, J. M., N. J. Jacobs., T. D. Sherman and S. O. Duke. 1991. Effects of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol. 97:197-203.   DOI
19 Jung, S., Y. Lee and K. Back. 2006. A tobacco plastidal transit sequence cannot override the dual targeting capacity of Myxococcus xanthus protoporphyrinogen oxidase in transgenic rice. Pestic. Biochem. Physiol. 86:49-56.   DOI
20 Jung, S., and K. Back. 2005. Herbicidal and antioxidant responses of traasgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiol. Biochem. 43:423-430.   DOI
21 Jung, S., H. J. Lee, Y. Lee, K. Kang, Y. S. Kim, B. Grimm and K. Back. 2008. Toxic tetrapyrrole accumulation in proloporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant Mol. Biol. 67:535-546.   DOI
22 Kenyon, W. H., S. O. Duke and K. C. Vaughn. 1985. Sequence of effects of acifluorfen on physiological and ultrastructural parameters in cucmber cotyledon discs. Pestic. Biochem. Physiol. 24: 240-250.   DOI
23 Knorzer. O. C, and P. Boger. 1999. Antagonizing peroxidizing herbicides, pp. 303-328. In P. Boger and K. Wakabayashi, eds. Peroxidising Herbicides. Springer-Verlag, Berlin Heidelberg New York.
24 Grimm, B. 1998. Novel insights in the control of tetrapyrrole metabolism of higher plants. Curr. Opin. Plant Biol. 1:245-250.   DOI
25 Beale, S. I. 1978. $\delta$-Aminolevulinic acid in plants : its biosynthesis, regulation, and role in plastid development. Annu. Rev. Plant Physiol. 29: 95-120.   DOI
26 Buege, T. A., and S. D. Aust. 1978. Microsomal lipid peroxidation. Method. Enzymol. 52:302-310.   DOI
27 Dolphin, D. 1994. Photomedicine and photody-namic therapy. Can. J. Chem. 72:1005-1013.   DOI
28 Ha, S. B., S. B. Lee, Y. Lee, K. Yang, N. Lee, S. M. Jang, J. S Chung, S. Jung, Y. S. Kim, S. G. Wi and K. Back. 2004. The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ. 27:79-88.   DOI