Browse > Article
http://dx.doi.org/10.5012/jkcs.2022.66.6.442

Diversification of 4,5-disubstituted Pyrrolo[3,2-d]-pyrimidines by Microwave Assisted Metal Catalyzed Reaction  

Jeong Seob, Byeon (Department of Chemistry, Chungnam National University)
Eul Kgun, Yum (Department of Chemistry, Chungnam National University)
Yeong-Joon, Kim (Department of Chemistry, Chungnam National University)
Publication Information
Abstract
Diverse pyrrolo[3,2-d]pyrimidines that are expected to exhibit bioactivity were synthesized through O-arylation and Suzuki coupling reactions. Microwave-assisted O-arylation was successfully performed using a Cu metal catalyst, so that 4 position of pyrrolo[3,2-d]pyrimidine could be substituted with phenol group. In addition, 4-aryl substituted pyrrolo[3,2-d]pyrimidines were synthesized with good to excellent yields by microwave-assisted Suzuki coupling reaction using a Pd metal catalyst. By using microwaves as reaction conditions for diversification of derivatives, it was possible to dramatically overcome the disadvantages of traditional heat reactions of long reaction times and heat transfer efficiency problems. The result of this study can be used to be diversify pyrrolo[3,2-d]pyrimidine derivatives, which are expected to play an important role in the drug discovery research.
Keywords
Microwave heating; O-arylation; Suzuki coupling; pyrrolo[3; 2-d]pyrimidine;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Acc. Chem. Res. 2014, 47, 1338.
2 Ravichandran, S.; Karthikeyan, E. Int. J. ChemTech Res. 2011, 3, 466.
3 Grewal, A. S.; Kumar, K.; Redhu, S.; Bhardwaj, S. Int. Res J Pharm. App Sci. 2013, 3, 278.
4 Ghosha, S; Mukhopadhyay, C. Curr. Microw. Chem. 2017, 4, 287.
5 Hoz, A. de la; Diaz-Ortiz A.; Prieto, P. Alternative Energy Sources for Green Chemistry 2016, 1-33.
6 McConnella, N.; Frettb, B.; Lib, H. Green Chem. Lett. Rev. 2018, 11, 286.
7 Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E. A.; Cravotto, G. RSC Adv. 2020, 10, 14170.
8 Kumar, K. J. Heterocycl. Chem. 2022, 59, 205.
9 Kilic-Kurt, Z.; Aka, Y.; Kutuk, O. Chem.-Biol. Interact. 2020, 330, 109236.
10 Yadav, T. T.; Shaikh, G. M.; Kumar, M. S.; Chintamaneni, M.; Mayur, Y. C. Front. Chem. 2022, 861288.
11 Javahershenas R.; Khalafy, J. Heterocycl. Commun. 2018, 24, 37.
12 Cawrse, B. M.; Robinson, N. M.; Lee, N. C.; Wilson, G. M.; Seley-Radtke, K. L. Molecules 2019, 24, 2656.
13 Kouhkan, M.; Javahershenas, R.; Khalafy, J. J. Biotechnol. Bioprocessing 2021, 2, 054.
14 Pathania, S.; Rawal, R. K. Eur. J. Med. Chem. 2018, 157, 503.   DOI
15 Choi, S. M.; Byeon, J. S.; Yum, E. K. Bull. Korean Chem. Soc. 2020, 41, 837.
16 Hong, C. H.; Park, S. Y.; Byeon, J. S.; Yum, E. K. Bull. Korean Chem. Soc. 2021, 42, 1641.
17 Lee, J. H.; Park, S. Y.; Park, A. R.; Yum, E. K. J. Kor. Chem. Soc. 2017, 61, 299.