Browse > Article
http://dx.doi.org/10.5012/jkcs.2022.66.5.341

Surface Characterization of Zinc Selenide Thin Films Obtained by RF co-sputtering  

Lee, Seokhee (Department of Chemistry, Pukyong National University)
Kang, Jisoo (Department of Chemistry, Brown University)
Park, Juyun (Department of Chemistry, Pukyong National University)
Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
Publication Information
Abstract
In this work, radio frequency magnetron sputtering was used to deposit zinc selenide thin films on p-type silicon (100) wafers and glass substrates in a high vacuum chamber. Several surface characterization instruments were implemented to study the thin films. X-ray photoelectron spectroscopy results revealed that oxidized Zn bound to Se (Zn-Se) at 1022.7 ± 0.1 eV becomes the dominant oxidized species when Se concentration exceeds 70%. Scanning electron microscopy coupled with energy dispersive spectroscopy showed that incorporating Se in Zn thin films will lead to formation of ZnSe grains on the surface. Contact angle measurements indicated that ZnSe-60 exhibited the lowest total surface free energy value of 24.94 mN/m. Lastly, ultraviolet-visible spectrophotometry and ultraviolet photoelectron spectroscopy data evinced that the energy band gap gradually increases with increasing Se concentration with ZnSe-70 having the highest work function value of 4.91 eV.
Keywords
Zinc Selenide; Thin films; RF co-sputtering; XPS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Owens, D.; Wendt, R. J. Appl. Polym. Sci. 1969, 13, 1741.
2 Vargaftik, N. B.; Volkov, B. N.; Voljak, L. D. J. Phys. Chem. Ref. Data 1983, 12, 817.   DOI
3 Zhao, Q.; Liu, Y.; Abel, E. W.; J. Mod. Phys. 2004, 280, 174.
4 Xu, B.; Ren, X.-G.; Gu, G.-R.; Lan, L.-L.; Wu, B.-J. Superlattices Microstruct. 2016, 89, 34.   DOI
5 Park, Y.; Choong, V.; Gao, Y.; Hsieh, B. R.; Tang, C. W. Appl. Phys. Lett. 1996, 68, 2699.
6 Choi, J.; Park, J.; Kang, J.; Frey, M. W.; Oh, J.-W.; Kang, Y. C. Surf. Interface Anal. 2019, 51, 641.   DOI
7 Kuriakose, S.; Satpatib, B.; Mohapatra, S. Phys. Chem. Chem. Phys. 2014, 16, 12741.   DOI
8 Guillen, G. G.; Palma, M. I. M.; Krishnan, B.; Avellaneda, D.; Castillo, G. A.; Roy, T. K. D.; Shaji, S. Mater. Chem. Phys. 2015, 162, 561.
9 Jeong, E.; Park, J.; Choi, S.; Kang, J.; Kang, Y. C. Bull. Korean Chem. Soc. 2015, 36, 2446.   DOI
10 Choi, S.; Park, J.; Kang, J.; Johnson, A. T. C.; Kang, Y. C. Vacuum. 2016, 128, 234.
11 Shen, Y.; Xu, N.; Hu, W.; Xu, X.; Sun, J.; Ying, Z.; Wu, J. Solid-State Electron. 2008, 52, 1833.
12 Choi, A.; Park, J.; Kang, J.; Jonas, O.; Kim, D.; Kim, H.; Oh, J.-W.; Kang, Y. C. Appl. Surf. Sci. 2020, 508, 144883.   DOI
13 Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O. Phys. Rev. B. 2007, 76, 125208.   DOI
14 Ha, Y. E.; Jo, M. Y.; Park, J.; Kang, Y. C.; Yoo, S. I.; Kim, J. H. J. Phys. Chem. C. 2013, 117, 2646.   DOI
15 Hassanien, A. S.; Aly, K. A.; Akl, A. A. J. Alloy. Compd. 2016, 685, 733.   DOI
16 Sharma, J.; Tripathi, S. K. Physica B Condens. Matter. 2011, 406, 1757.
17 Lee, S.; Park, J.; Oh, J.-W.; Kang, Y. C. Physica B Condens. Matter. 2020, 591, 412257.
18 Lohar, G. M.; Thombare, J. V.; Shinde, S. K.; Chougale, U. M.; Fulari, V. J. J. of Shivaji University (Science & Technology) 2014, 41, 1.
19 Song, M.; Park, J. H.; Kim, C. S.; Kim, D.-H.; Kang, Y. C.; Jin, S.-H.; Jin, W.-Y.; Kang, J.-W. Nano Res. 2014, 7, 1370.   DOI
20 Ha, Y. E.; Jo, M. Y.; Park, J.; Kang, Y. C.; Moon, S.-J.; Kim, J. H. Synth. Met. 2014, 187, 113.
21 Lohar, G. M.; Shinde, S. K.; Fulari, V. J. J. Semicond. 2014, 35, 113001-1.   DOI
22 Graf, B. W.; Chaney, E. J.; Marjanovic, M.; Lisio, M. D.; Valero, M. C.; Boppart, M. D.; Boppart, S. A. Biomed. Opt. Express. 2013, 4, 1817.   DOI
23 Sricharussin, W.; Threepopnatkul, P.; Neamjan, N. Fibers Polym. 2011, 12, 1037.
24 Baek, J.-H.; Park, J.; Kang, J.; Kim, D.; Koh, S.-W.; Kang, Y. C. Bull. Korean Chem. Soc. 2012, 33, 2694.   DOI
25 Sadekar, H. K.; Ghule, A. V.; Sharma, R. Composites: Part B 2013, 44, 553.   DOI
26 Parent, D. W.; Rodriguez, A.; Ayers, J. E.; Jain, F. C. Solid-State Electron. 2003, 47, 595.
27 Shikha1, D.; Mehta1, V.; Sharma, J.; Chauhan, R. P. J. Mater. Sci.-Mater. Electron. 2017, 28, 8359.   DOI
28 Han, J. W.; Joo, C. W.; Lee, J.; Lee, D. J.; Kang, J.; Yu, S.; Sung, W. J.; Cho, N. S.; Kim, Y. H. Sci. Technol. Adv. Mater. 2019, 20, 35.
29 Nishizawa, J.; Itoh, K.; Okuno, Y.; Sakurai, F. J. Appl. Phys. 1985, 57, 2210.   DOI
30 Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; Ping, J.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R.; Johnson, A. T. C. Nat. Commun. 2015, 6, 1
31 Venkatachalam, S.; Jeyachandran, Y. L.; Sureshkumar, P.; Dhayalraj, A.; Mangalaraj, D.; Narayandass, S. K.; Velumani, S.; Mater. Charact. 2007, 58, 794.   DOI
32 Hao, H.; Yao, X.; Wang, M. Opt. Mater. 2007, 29, 573.
33 Leung, Y. P.; Choy, W. C. H.; Yuk, T. I. Chem. Phys. Lett. 2008, 457, 198.   DOI
34 Jabri, S.; Amiri, G.; Sallet, V.; Souissi, A.; Meftah, A.; Galtier, P.; Oueslati, M. Physica B 2016, 489, 93.   DOI
35 Choi, S.; Kang, J.; Park, J.; Kang, Y. C. Thin Solid Films. 2014, 571, 84.
36 Lupan, O.; Emelchenko, G. A.; Ursaki, V. V.; Chai, G.; Redkin, A. N.; Gruzintsev, A. N.; Tiginyanu, I. M.; Chow, L.; Ono, L. K.; Cuenya, B. R.; Heinrich, H.; Yakimov, E. E. Mater. Res. Bull. 2010, 45, 1026.   DOI
37 Gong, H.; Huang, H.; Wang, M.; Liu, K. Mater. Ceram. Int. 2007, 33, 1381.
38 Kim, D.; Park, J.; Choi, J.; Oh, J.-W.; Kang, Y. C. Physica B Condens. Matter. 2021, 612, 412890.
39 Guo, Z.-G.; Liu, W.-M.; Su, B.-L. Appl. Phys. Lett. 2008, 92, 063104-1.
40 Young, T. Philos. Trans. R. Soc. 1805, 95, 65.