Browse > Article
http://dx.doi.org/10.5012/jkcs.2020.64.6.350

Local and Normal Modes of OH Stretching Vibration in Hydrogen-Bonded Water Molecules  

Kwon, Seeun (Department of Chemistry, Chungbuk National University)
Yang, Mino (Department of Chemistry, Chungbuk National University)
Publication Information
Abstract
The validity of the calculation method based on the local mode in hydrogen-bonded water molecules was investigated by comparing the frequencies of the local and normal modes of OH stretching vibration in water molecules. By calculating a monomer, dimer, and trimer of water molecules using a quantum chemical ab initio theory, we examined how the frequencies of the local and normal modes and the anharmonicity of local modes vary with molecular cluster size. It was shown that, as the number of molecules increases from monomer to trimer, the anharmonicity of OH bonds increases and the difference between local and normal mode frequencies decreases. This confirms that local-mode-based calculations that can easily handle the anharmonicity can be appropriate for the calculation of the OH stretching frequency of water molecules in the condensed phase.
Keywords
Water; Stretching vibration; OH; Hydrogen bonding;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bellissent-Funel, M.-C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A. E. Chem. Rev., 2016, 116, 7673.   DOI
2 Biedermannova, L.; Schneider, B. Biochimica et Biophysica Acta (BBA) - General Subjects, 2016, 1860, 1821.   DOI
3 Cheung, M. S.; Garcia, A. E.; Onuchic, J. N. P. Natl. Acad. Sci. USA, 2002, 99, 685.   DOI
4 Levy, Y.; Onuchic, J. N. Ann. Rev. Biophys. Biomol. Struct. 2006, 35, 389.   DOI
5 Qin, Y.; Wang, L.; Zhong, D. P. Natl. Acad. Sci. USA, 2016, 113, 8424.   DOI
6 Huisken, F.; Kaloudis, M.; Kulcke, A. J. Chem. Phys., 1996, 104, 17.   DOI
7 Zhang, B.; et al., P. Natl. Acad. Sci. USA, 2020, 117, 15423.   DOI
8 Seo, H.-I.; Kim, J.-M.; Song, H.-S.; Kim, S.-J. 대한화학회지, 2017, 61, 328.   DOI
9 김성현, 신창호, 김지선, 강소영 and 김승준, 대한화학회지, 2015, 59, 9.   DOI
10 Nielsen, H. H. Rev. Mod. Phys., 1951, 23, 90.   DOI
11 Bowman, J. M. Acc. Chem. Res., 1986, 19, 202.   DOI
12 Johnson, R. D.; Irikura, K. K.; Kacker, R. N.; Kessel, R. J. Chem. Theory Comput., 2010, 6, 2822.   DOI
13 Hus, M.; Urbic, T. J. Chem. Phys., 2012, 136, 144305.   DOI
14 Jeon, K.; Yang, M. J. Chem. Phys., 2017, 146, 054107.   DOI
15 Lawton, R. T.; Child, M. S. Mol. Phys., 1981, 44, 709.   DOI
16 Watson, I. A.; Henry, B. R.; Ross, I. G. Spectrochimica Acta Part A: Molecular Spectroscopy, 1981, 37, 857.   DOI
17 SibertIII, E. L. J. Chem. Phys., 2019, 150, 090901.   DOI
18 Auer, B. M.; Skinner, J. L. J. Chem. Phys., 2008, 128, 224511.   DOI
19 Goldman, N.; Saykally, R. J. J. Chem. Phys., 2004, 120, 4777.   DOI
20 Frisch, M. J.; et al., (Gaussian, Inc., Wallingford, CT, USA, 2009).
21 Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett., 1988, 153, 503.   DOI
22 Bloino, J.; Barone, V. J. Chem. Phys., 2012, 136, 124108.   DOI
23 Peterson, K. A.; Woon, D. E.; Jr., T. H. D. J. Chem. Phys., 1994, 100, 7410.   DOI
24 Jeon, K.; Yang, M. Bull. Korean Chem. Soc., 2019, 40, 102.   DOI
25 Jeon, K.; Yang, M. Comp. Theor. Chem., 2019, 1149, 37.   DOI
26 Sibert, E. L. Mol. Phys., 2013, 111, 2093.   DOI