Browse > Article
http://dx.doi.org/10.5012/jkcs.2020.64.3.153

Development of An Eco-friendly Surface Treatment Process for the Design of the Al Lead Tab in Lithium-ion Batteries  

Cheon, Jeongsuk (R&D Center, Clavis Corporation)
Kim, Jongwon (Department of Chemistry, Chungbuk National University)
Publication Information
Abstract
With the recent popularity of mobile devices, the demand for lithium-ion batteries is increasing. In this study, the surface treatment process for the development of the Al (aluminum) lead tab for positive electrode, a key component of the pouch-type lithium-ion battery, was investigated. Anodizing and sealing processes were tested as surface treatment techniques. It was found that only a sealing process is needed to obtain sufficient adhesive strength. In the present study, an adhesive strength of 17 N/12 mm was achieved by degreasing and etching pretreatment, followed by a sealing process of 10 min duration. This adhesive strength was greater than that achievable using Cr (chromium) surface treatment. Using various surface analysis techniques, the shape and composition of the surface before and after being subjected to the surface treatment were compared and analyzed. The results of this study are expected to contribute to the development of an eco-friendly lead tab.
Keywords
Al lead tab; Eco-friendly surface treatment; Sealing process; Lithium-ion battery;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Xu, J.; Thomas, H. R.; Francis, R. W.; Lum, K. R.; Wang, J.; Liang, B., J. Power Sources 2008, 177, 512.   DOI
2 Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M., J. Power Sources 2012, 207, 173.   DOI
3 Barre, A.; Deguilhem, B.; Grolleau, S.; Gerard, M.; Suard, F.; Riu, D., J. Power Sources 2013, 241, 680.   DOI
4 Schroder, R.; Aydemir, M.; Seliger, G.Procedia Manuf. 2017, 8, 104.   DOI
5 Zhao, W.; Luo, G.; Wang, C.-Y., J. Power Sources 2014, 257, 70.   DOI
6 Hagans, P. L.; Haas, C. M. In Surface Engineering; Cotell, C. M., Sprague, J. A., Smidt, F. A., Jr., Eds.; ASM International, 1994; Vol. 5, p 405.
7 Kim, S.; Lee, C., J. Korean Ind. Eng. Chem. 2006, 17, 433.
8 Kikuchi, T.; Nakajima, D.; Nishinaga, O.; Natsui, S.; Suzuki, R., Curr. Nanosci. 2015, 11, 560.   DOI
9 Choi, J.; Lee, J.; Lim, H.; Kim, S., J. Korean Ind. Eng. Chem 2008, 19, 249.
10 Hao, L.; Cheng, B. R., Met. finish. 2000, 98, 8.   DOI
11 Park, J. In Anticorrosion & metal finishing; 3rd ed.; Sejinsa: Seoul, 2013, p 449.
12 Jing, G.; Chen, T.; Luan, M., Arab. J. Chem. 2016, 9, S457.   DOI
13 Samba, A.; Omar, N.; Gualous, H.; Capron, O.; Van den Bossche, P.; Van Mierlo, J., Electrochim. Acta 2014, 147, 319.   DOI
14 Eom, S.; Park, S.; Kim, Y.; Kim, Y.; Shul, Y., J. Electrochem. Soc. 2009, 12, 47.   DOI
15 Stepniowski, W. J.; Norek, M.; Michalska-Domanska, M.; Bojar, Z., Mater. Lett. 2013, 111, 20.   DOI
16 Saceleanu, F.; Vuong, T. V.; Master, E. R.; Wen, J. Z., Int. J. Energy Res. 2019, 43, 7384.
17 Lee, J., J. Korean Inst. Surf. Eng. 2018, 51, 11.   DOI
18 Crist, B. In PDF Handbook of Monochromatic XPS of Commercially Pure Binary Oxides; Crist, B. V., Ed.; XPS International LLC, 2018; Vol. 2, p 43.
19 Chubar, N.; Gerda, V.; Miuk, M.; Omastova, M.; Heister, K.; Man, P.; Yablokova, G.; Banerjee, D.; Fraissard, J., Acta Phys. Pol. A 2018, 133, 1091.   DOI