Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.5.346

Organocatalytic Mannich-Type Reactions of Cyclic N-Sulfimines with Trimethylsiloxyfuran and Pyrazolin-5-one  

Lee, Jiseon (Department of Chemistry, Kyonggi University)
Kim, Sung-Gon (Department of Chemistry, Kyonggi University)
Publication Information
Abstract
Mannich-type reactions of cyclic N-sulfimines with 2-trimethylsiloxyfuran and pyrazolin-5-one have been developed using phosphoric acid (PA) as an organocatalyst. 2-Trimethylsiloxyfuran underwent a vinylogous Mannich-type reaction with cyclic N-sulfimines in the presence of the PA catalyst to give sulfamidate ${\gamma}$-butenolides in good yields and with high diastereoselectivities (up to 90% yield and 7:1 dr). In addition, the reaction between pyrazolin-5-one and a diverse range of cyclic N-sulfimines provided access to sulfamidates in good to high yields (up to 94% yield).
Keywords
Mannich reaction; Sulfamidate; Trimethylsiloxyfuran; Pyrazolin-5-one; Phosphoric acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (a) Kumar, KC. S.; Muller, K. J. Nat. Prod. 1999, 62, 817.   DOI
2 (b) Ottow, E. A.; Brinker, M.; Teichmann, T.; Fritz, E.; Kaiser, W.; Brosche, M.; Kangasjarvi, J.; Jiang, X.; Polle, A. Plant Physiol. 2005, 139, 1762.   DOI
3 (c) Roethle, P. A.; Trauner, D. Nat. Prod. Rep. 2008, 25, 298.   DOI
4 (d) Uchida, M.; Takamatsu, S.; Arima, S.; Miyamoto, K. T.; Kitani, S.; Nihira, T.; Ikeda, H.; Nagamitsu, T. J. Antibiotics 2011, 64, 781.   DOI
5 (e) Zhang, J.; Tang, X.; Li, J.; Li, P.; de Voogd, N. J.; Ni, X.; Jin, X.; Yao, X.; Li, P.; Li, G. J. Nat. Prod. 2013, 76, 600.   DOI
6 (a) Negishi, E.-I.; Kotora, M. Tetrahedron 1997, 53, 6707.   DOI
7 (b) Akiyama, T.; Honma, Y.; Itoh, J.; Fuchibe, K. Adv. Synth. Cat. 2008, 350, 399.   DOI
8 (c) Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48, 9426.   DOI
9 (d) Mao, B.; F nanas-Mastral, M.; Feringa, B. L. Chem. Rev. 2017, 117, 10502.   DOI
10 (a) Carswell, E. L.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2006, 45, 7230.   DOI
11 (c) Deng, H.-P.; Wei, Y.; Shi, M. Adv. Synth. Cat. 2009, 351, 2897.   DOI
12 (d) Hayashi, M.; Sano, M.; Funahashi, Y.; Nakamura, S. Angew. Chem., Int. Ed. 2013, 52, 5557.   DOI
13 (e) Rao, V. U. B.; Jadhav, A. P.; Garad, D.; Singh, R. P. Org. Lett. 2014, 16, 648.   DOI
14 (f) Nakamura, S.; Yamaji, R.; Hayashi, M. Chem. Eur. J. 2015, 21, 9615.   DOI
15 (g) Rainoldi, G.; Sacchetti, A.; Silvani, A.; Lesma, G. Org. Biomol. Chem. 2016, 14, 7768.   DOI
16 (b) Seitz, M.; Reiser, O. Curr. Opin. Chem. Biol. 2005, 9, 285.   DOI
17 (a) Lee, S. G.; Kim, S.-G. RSC Adv. 2017, 7, 34283.   DOI
18 (b) Choi, S.; Kim, S.-G. Bull. Korean Chem. Soc. 2018, 39, 1340.   DOI
19 (a) Terada, M. Synthesis 2010, 1929.   DOI
20 (b) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262.   DOI
21 (b) Kumar, V.; Kaur, K.; Gupta, G. K.; Sharma, A. K. Eur. J. Med. Chem. 2013, 69, 735.   DOI
22 (c) Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518.   DOI
23 (d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.   DOI
24 (e) Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem. Res. 2015, 48, 388.   DOI
25 (f) Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.; Masson, G. Chem. Eur. J. 2018, 24, 3925.   DOI
26 (a) Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. Chem. Rev. 2011, 111, 6984.   DOI
27 (c) Gupta, P.; Gupta, J. K.; Halve, A. K. Int. J. Pharm. Sci. Res. 2015, 6, 2291.
28 Chauhan, P.; Mahajan, S.; Enders, D. Chem. Commun. 2015, 51, 12890.   DOI