Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.4.237

Ab Initio Studies of Hydrogen Bihalide Anions: Anharmonic Frequencies and Hydrogen-Bond Energies  

Cheong, Byeong-Seo (Department of Chemistry, Incheon National University)
Publication Information
Abstract
Hydrogen bihalide anions, $XHX^-$ (X = F, Cl, and Br) have been studied by high level ab initio methods to determine the molecular structure, vibrational frequencies, and energetics of the anions. All bihalide anions are found to be of linear and symmetric structures, and the calculated bond lengths are consistent with experimental data. The harmonic frequencies exhibit large deviations from the experimental frequencies, suggesting the vibrations of these anions are very anharmonic. Two different approaches, the VSCF and VPT2 methods, are employed to calculate the anharmonic frequencies, and the results are compared with the experimental frequencies. While the ${\nu}_1$ and ${\nu}_2$ frequencies are in reasonable agreement with the experimental values, the ${\nu}_3$ and ${\nu}_1+{\nu}_3$ frequencies still exhibit large deviations. The hydrogen-bond energies and enthalpies are calculated at various levels including the W1BD and G4 composite methods. The hydrogen-bond enthalpies calculated are in good agreement with the experimental values.
Keywords
Hydrogen bihalide anions; Hydrogen-bond complexes; Ab initio methods; Anharmonic frequencies; Hydrogen-bond energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (a) Sannigrahi, A. B.; Peyerimhoff, S. D. J. Mol. Struct-Theochem. 1985, 122, 127;   DOI
2 (b) Botschwina, P.; Sebald, P.; Burmeister, R. J. Chem. Phys. 1988, 88, 5246;   DOI
3 (c) Ikuta, S.; Saitoh, T.; Nomura, O. J. Chem. Phys. 1989, 91, 3539.   DOI
4 (a) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1971, 55, 2550;   DOI
5 (b) Lugez, C. L.; Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1996, 105, 3901.   DOI
6 (a) Pivonka, N. L.; Kaposta, C.; von Helden, G.; Meijer, G.; Woste, L.; Neumark, D. M.; Asmis, K. R. J. Chem. Phys. 2002, 117, 6493;   DOI
7 (b) Pivonka, N. L.; Kaposta, C.; Brummer, M.; von Helden, G.; Meijer, G.; Woste, L.; Neumark, D. M.; Asmis, K. R. J. Chem. Phys. 2003, 118, 5275.   DOI
8 (a) Sannigrahi, A. B.; Peyerimhoff, S. D. J. Mol. Struct-Theochem. 1988, 165, 55;   DOI
9 (b) Ikuta, S.; Saitoh, T.; Nomura, O. J. Chem. Phys. 1990, 93, 2530.   DOI
10 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford, CT, 2013.
11 Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, Jr., J. A. J. Comput. Chem. 1993, 14, 1347.   DOI
12 (a) Bowman, J. M. Acc. Chem. Res. 1986, 19, 202;   DOI
13 (b) Gerber, R. B.; Ratner, M. A. Adv. Chem. Phys. 1988, 70, 97.
14 (a) Jung, J. O.; Gerber, R. B. J. Chem. Phys. 1996, 105, 10332   DOI
15 (b) Norris, L. S.; Ratner, M. A.; Roitberg, A. E.; Gerber, R. B. J. Chem. Phys. 1996, 105, 11261;   DOI
16 (c) Matsunaga, N.; Chaban, G. M.; Gerber, R. B. J. Chem. Phys. 2002, 117, 3541.   DOI
17 Barone, V. J. Chem. Phys. 2005, 122, 014108.   DOI
18 Stein, C.; Oswald, R.; Sebald, P.; Botschwina, P.; Stoll, H.; Peterson, K. A. Mol. Phys. 2013, 111, 2647.   DOI
19 Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.   DOI
20 Yagi, K.; Taketsugu, T.; Hirao, K.; Gordon, M. S. J. Chem. Phys. 2000, 113, 1005.   DOI
21 Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126, 084108.   DOI
22 Pudzianowski, A. T. J. Chem. Phys. 1995, 102, 8029.   DOI
23 (a) Martin, J. M. L.; Oliveira, G. de J. Chem. Phys. 1999, 111, 1843;   DOI
24 (b) Barnes, E. C.; Petersson, G. A.; Montgomery, J. A.; Frisch, M. J.; Martin, J. M. L. J. Chem. Theory Comput. 2009, 5, 2687.   DOI
25 (a) Chaban, G. M.; Jung, J. O.; Gerber, R. B. J. Phys. Chem. A 2000, 104, 2772;   DOI
26 (b) Chaban, G. M.; Xantheas, S. S.; Gerber, R. B. J. Phys. Chem. A 2003, 107, 4952.   DOI
27 Larson, J. W.; McMahon, T. B. Inorg. Chem. 1984, 23, 2029.   DOI
28 Caldwell, G.; Kebarle, P. Can. J. Chem. 1985, 63, 1399.   DOI
29 (a) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, U. K., 1997;
30 (b) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer, Berlin, Germany, 1991.
31 Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, U. K., 1999.
32 Scheiner, S. Hydrogen Bonding. A Theoretical Perspective; Oxford University Press: Oxford, U. K., 1997.
33 Hadzi, D. Ed.; Theoretical Treatments of Hydrogen Bonding; Wiley: Chichester, U. K., 1997.
34 Wenthold, P. G.; Squires, R. R. J. Phys. Chem. 1995, 99, 2002.   DOI
35 (a) Neumark, D. M. Acc. Chem. Res. 1993, 26, 33;   DOI
36 (b) Neumark, D. M. Phys. Chem. Chem. Phys. 2005, 7, 433.   DOI
37 (b) Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1987, 87, 6838.   DOI
38 (b) McDonald, S. A.; Andrews, L. J. Chem. Phys. 1979, 70, 3134;   DOI
39 (c) Hunt, R. D.; Andrews, L. J. Chem. Phys. 1987, 87, 6819.   DOI
40 (a) Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1986, 84, 2953;   DOI
41 (a) Spirko, V.; Diercksen, G. H. F.; Sadlej, A. J.; Urban, M. Chem. Phys. Lett. 1989, 161, 519;   DOI
42 (b) Spirko, V.; Cejchan, A.; Diercksen, G. H. F. Chem. Phys. 1991, 151, 45;   DOI
43 (c) Yamashita, K.; Morokuma, K.; Leforestier, C. J. Chem. Phys. 1993, 99, 8848;   DOI
44 (b) Hirata, S.; Miller, E. B.; Ohnishi, Y.; Yagi, K. J. Phys. Chem. A 2009, 113, 12461.   DOI
45 (d) Spirko, V.; Sindelka, M.; Shirsat, R. N.; Leszczynski, J. Chem. Phys. Lett. 2003, 376, 595.   DOI
46 (a) Elghobash, N.; Gonzalez, L. J. Chem. Phys. 2006, 124, 174308;   DOI
47 (a) Ault, B. S. J. Phys. Chem. 1978, 82, 844;   DOI
48 Del Bene, J. E.; Jordan, M. J. T. Spectrochim. Acta A 1999, 55, 719.   DOI
49 (a) Swalina, C.; Hammes-Schiffer, S. J. Phys. Chem. A 2005, 109, 10410;   DOI
50 (b) Hirata, S.; Yagi, K.; Perera, S. A.; Yamazaki, S.; Hirao, K. J. Chem. Phys. 2008, 128, 214305.   DOI
51 (a) Rasanen, M.; Seetula, J.; Kunttu, H. J. Chem. Phys. 1993, 98, 3914;   DOI
52 (b) Lignell, A.; Khriachtchev, L.; Mustalampi, H.; Nurminen, T.; Rasanen, M. Chem. Phys. Lett. 2005, 405, 448.   DOI
53 (a) Forney, D.; Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1995, 103, 1755;   DOI
54 Kawaguchi, K. J. Chem. Phys. 1988, 88, 4186.   DOI
55 (b) Legay-Sommaire, N.; Legay, F. Chem. Phys. Lett. 1999, 314, 40;   DOI
56 (c) Fridgen, T. D.; Zhang, X. K.; Parnis, J. M.; March, R. E. J. Phys. Chem. A 2000, 104, 3487.   DOI