Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.1.56

The Chemistry Teachers' Perceptions and Interpretations about Three Acid-Base Models  

Kim, Sungki (Gwangju Science Academy for the Gifted)
Choi, Hee (Bongmyeong High School)
Park, Chul-Yong (Kongju National University High School)
Paik, Seoung-Hey (Korea National University of Education)
Publication Information
Abstract
This study investigated the perceptions of the relationship among the three acid-base models of chemistry teachers. In addition, we examined how the perception of the relationship between models affected on the interpretation of concepts in each model. To investigate teachers' perceptions and interpretations, a questionnaire and interviews were conducted for 24 chemistry teachers. As results, most of the chemistry teachers recognized the three models as cumulative extension relationships. The perceptions were related to the contents of textbooks. The perception of the relationship of these models influenced on interpretations of the models' acid-base concept. In this study, we suggested that science teachers need to be aware of diverse models' roles.
Keywords
Acid and base; Scientific model; Diversity of model; Relationship of models;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Creswell, J. W.; Qualitative Inquiry and Research Design: Choosing Among Five Approaches, Sage Pubncations, Inc: 2013; pp. 243-268.
2 Creswell, J. W.; Miller, D. L. Theory into Pract. 2000, 39, 124.   DOI
3 Giere, R. N.; Bickle, J.; Mauldin, R. Understanding Scientific Reasoning, Cengage learning: 2006; pp. 11-57.
4 Seroglou, F.; Koumaras, P. Sci. Educ. 2001, 10, 153.   DOI
5 Duschl, R. A.; Schweingruber, H. A.; Shouse, A. W. Taking Science to School. Learning and Teaching Science in Grades K-8, National Academies Press: Washington, DC, 2007; pp. 168-185.
6 de Vos, W.; Pilot, A. J. Chem. Educ. 2001, 78, 494.   DOI
7 Chang, H. S. Is water $H_2O$. Springer: London, 2012; pp. 253-276.
8 Kolb, D. J. Chem. Educ. 1978, 55, 459.   DOI
9 Won, J. A.; Gwak, J. R.; Park, Y. N; Paik, S. H. Kor. J. Teach. Educ. 2010, 26, 65.
10 Kim, S. K.; Park, C. Y.; Choi, H.; Park. S. H. J. Korean Chem. Soc. 2017, 61, 65.   DOI
11 Drechsler, M.; Schmidt, H. J. Sci. Educ. Int. 2005, 16, 39.
12 Kim, S. K.; Park, C. Y.; Choi, H.; Paik, S. H. J. Korean Chem. Soc. 2018, 62, 279.   DOI
13 Sisovic, D.; Bojovic, S. Chem. Educ. Res. Pract. 2000, 1, 263.   DOI
14 McClary, L.; Talanquer, V. J. Res. Sci. Teach. 2011, 48, 396.   DOI
15 Nakhleh, M. B. J. Chem. Educ. 1994, 71, 495.   DOI
16 Drechsler, M.; Schmidt, H. J. Chem. Educ. Res. Pract. 2005, 6, 19.   DOI
17 National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. The National Academies Press: Washington, DC, 2012.
18 Kim, M. Y.; Kim, H. K. J. Kor. Ass. Sci. Educ. 2007, 27, 379.
19 Oh, P. S. J. Kor. Ass. Sci. Educ. 2007, 27, 645.
20 Oh, P. S.; Oh, S. J. Kor. Ass. Sci. Educ. 2011, 31, 128.   DOI
21 Cha, J. H.; Kim, Y. H.; Noh, T. H. J. Korean Chem. Soc. 2004, 48, 638.   DOI
22 Ha, J. H.; Lee, H. J.; Kang, S. J. J. Gifted/Talented Educ. 2009, 19, 187.
23 Zangori, L.; Peel, A.; Kinslow, A.; Friedrichsen, P.; Sadler, T. D. J. Res. Sci. Teach. 2017, 54, 1249.   DOI
24 Cokelez, A. J. Chem. Educ. 2010, 87, 102.   DOI
25 Gilbert, J. K. Visualization: An emergent field of practice and enquiry in science education. In Visualization: Theory and practice in science education, Springer: 2008; pp. 3-24.
26 Kim, S. H.; Park, C. Y.; Choi, H.; Paik, S. H. J. Korean Chem. Soc. 2018, 62, 226.   DOI
27 Gilbert, J. K.; Boulter, C. J.; Rutherford, M. Int. J. Sci. Educ. 1998, 20, 83.   DOI
28 Magnani, L.; Casadio, C.; Magnani. Model-based reasoning in science and technology, Springer: 2016; pp. 639-661.
29 Ruppert, J.; Duncan, R. G.; Chinn, C. A. (2017). Disentangling the role of domain-specific knowledge in student modeling. Research in Science Education, 1-28.
30 Treagust, D. F.; Chittelborough, G. D.; Mamiala, T. L. Int. J. Sci. Educ. 2002, 24, 357.   DOI
31 NGSS. Next Generation Science Standards: For state, By states. NGSS Lead States: U.S.A., 2013.
32 Portides, D. P. Sci. Educ. 2007, 16, 699.   DOI
33 Windschitl, M.; Thompson, J.; Braaten, M. Sci. Educ. 2008, 92, 941.   DOI
34 Lehrer, R.; Schauble, L. J. Appl. Dev. Psycho. 2000, 21, 39.   DOI
35 Mislevy, R. J.; Haertel, G.; Riconscente, M.; Rutstein, D. W.; Ziker, C. Design patterns for model-based reasoning. In Assessing model-based reasoning using evidence-centered design, Springer: 2017; pp. 25-29.
36 Carr, M. Res. Sci. Educ. 1984, 14, 97.   DOI
37 Oxtoby, D. W.; Gillis, H. P.; Butler, L. J. Principles of modern chemistry, 7th ed.; Cengage Learning: 2015; pp. 670-676.
38 Zumdahl, S. S.; DeCoste, D. J. Chemical principles, 8th ed.; Nelson Education: 2012; p.679.
39 Brown, T. L. Chemistry: the Central Science, 4th ed.; Pearson Education: 2009; pp. 692-693.
40 Noh, T. H.; Choi, S. S.; Kang, S. J.; Lee, S. Y.; Bae, B. I.; Go, S. Y.; Ju, Y.; Choi, S. Y. Chemistry I, Chunjae Press: Seoul, 2011; p.218.
41 Hawkes, S. J. J. Chem. Educ. 1992, 69, 542.   DOI
42 Shaffer, A. A. J. Chem. Educ. 2006, 83, 1746.   DOI
43 Paik, S. H. J. Chem. Educ. 2015, 92, 1484.   DOI