Browse > Article
http://dx.doi.org/10.5012/jkcs.2018.62.2.106

Evaluation of Thermal Hysteresis Activity of Ice-binding Proteins Using Ice-etching and Molecular Docking  

Nugroho, Wahyu Sri Kunto (Department of Chemistry, Pukyong National University)
Wu, Sangwook (Department of Physics, Pukyong National University)
Kim, Hak Jun (Department of Chemistry, Pukyong National University)
Publication Information
Abstract
Ice-binding proteins have an affinity for ice. They create a gap between the melting and freezing points by inhibiting the growth of ice, known as thermal hysteresis (TH). Interestingly, moderately active LeIBP and hyperactive FfIBP are almost identical in primary and tertiary structures, but differ in TH activity. The TH of FfIBP is tenfold higher than that of LeIBP, due to a subtle difference in their ice-binding motifs. To further evaluate the difference in TH, the interactions were investigated by ice-etching and molecular docking. Ice-etching showed that FfIBP binds to the primary and secondary prism, pyramidal, and basal planes; previously, LeIBP was found to bind to the basal and primary prism planes. Docking analysis using shape complementarity (Sc) showed that the hyperactive FfIBP had higher Sc values for all four ice planes than LeIBP, which is comparable with TH. Docking can be used to describe the hyperactivity of IBPs.
Keywords
Ice-binding protein; Thermal hysteresis; Ice crystal planes; Docking; Shape complementarity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H. J.; Lee, J. H.; Hur, Y. B.; Lee, C. W.; Park, S.- H.; Koo, B.-W. Mar. Drugs. 2017, 27.
2 Davies, P. L. Trends Biochem. Sci. 2014, 548.
3 Bar Dolev, M.; Braslavsky, I.; Davies, P. L. Annu. Rev. Biochem. 2016, 85, 515.   DOI
4 Raymond, J. A. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E198.   DOI
5 Raymond, J. A.; Kim, H. J. PLoS One 2012, 7, e35968.   DOI
6 Raymond, J. A.; Fritsen, C.; Shen, K. FEMS Microbiol. Ecol. 2007, 61, 214.   DOI
7 Kristiansen, E.; Zachariassen, K. E. Cryobiology 2005, 51, 262.   DOI
8 Fletcher, G. L.; Hew, C. L.; Davies, P. L. Annu. Rev. Physiol. 2001, 63, 359.   DOI
9 Lee, S. G.; Lee, J. H.; Kang, S.; Kim, H. J. Mar. Proteins Pept. Biol. Act. Appl. 2013, 667.
10 Graham, L. A.; Liou, Y. C.; Walker, V. K.; Davies, P. L. Nature 1997, 388, 727.   DOI
11 Graether, S. P.; Kuiper, M. J.; Gagne, S. M.; Walker, V. K.; Jia, Z.; Sykes, B. D.; Davies, P. L. Nature 2000, 406, 325.   DOI
12 Hanada, Y.; Kondo, H.; Garnham, C. P.; Togashi, S.; Nishimiya, Y.; Hoshino, T.; Miura, A.; Davies, P. L.; Tsuda, S. In Ice- Binding Protein Conference; Kingston, ON, Canada, 2011.
13 Raymond, J. A.; de Vries, A. L. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 2589.   DOI
14 Knight, C. A.; Cheng, C. C.; de Vries, A. L. Biophys. J. 1991, 59, 409.   DOI
15 Drori, R.; Celik, Y.; Davies, P. L.; Braslavsky, I. J. R. Soc. Interface 2014, 11, 20140526.   DOI
16 Pertaya, N.; Marshall, C. B.; Celik, Y.; Davies, P. L.; Braslavsky, I. Biophys. J. 2008, 95, 333.   DOI
17 Park, K. S.; Do, H.; Lee, J. H.; Park, S. I.; Kim, E. J.; Kim, S. J.; Kang, S. H.; Kim, H. J. Cryobiology 2012, 64, 286.   DOI
18 Lee, J. H.; Park, A. K.; Do, H.; Park, K. S.; Moh, S. H.; Chi, Y. M.; Kim, H. J. J. Biol. Chem. 2012, 287, 11460.   DOI
19 Do, H.; Kim, S. J.; Kim, H. J.; Lee, J. H. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 1061.   DOI
20 Nishimiya, Y.; Ohgiya, S.; Tsuda, S. J. Biol. Chem. 2003, 278, 32307.   DOI
21 Baardsnes, J.; Kuiper, M. J.; Davies, P. L. J. Biol. Chem. 2003, 278, 38942.   DOI
22 Jia, Z.; Davies, P. L. Trends Biochem. Sci. 2002, 27, 101.   DOI
23 Nutt, D. R.; Smith, J. C. J. Am. Chem. Soc. 2008, 130, 13066.   DOI
24 Garnham, C. P.; Campbell, R. L.; Davies, P. L. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 7363.   DOI
25 Bartels-Rausch, T.; Bergeron, V.; Cartwright, J. H. E.; Escribano, R.; Finney, J. L.; Grothe, H.; Gutierrez, P. J.; Haapala, J.; Kuhs, W. F.; Pettersson, J. B. C. Rev Mod Phys 2012, 84, 885.   DOI
26 Leinala, E. K.; Davies, P. L.; Jia, Z. Structure 2002, 10, 619.   DOI
27 Doucet, D.; Tyshenko, M. G.; Kuiper, M. J.; Graether, S. P.; Sykes, B. D.; Daugulis, A. J.; Davies, P. L.; Walker, V. K. Eur. J. Biochem. 2000, 267, 6082.   DOI
28 Graether, S. P.; Slupsky, C. M.; Davies, P. L.; Sykes, B. D. Biophys. J. 2001, 81, 1677.   DOI
29 Fortes, A. D.; Wood, I. G.; Grigoriev, D.; Alfredsson, M.; Kipfstuhl, S.; Knight, K. S.; Smith, R. I. J. Chem. Phys. 2004, 120, 11376.   DOI
30 Hew, C. L.; Yang, D. S. Eur. J. Biochem. 1992, 203, 33.   DOI
31 Garnham, C. P.; Natarajan, A.; Middleton, A. J.; Kuiper, M. J.; Braslavsky, I.; Davies, P. L. Biochemistry 2010, 49, 9063.   DOI
32 Howard, E. I.; Blakeley, M. P.; Haertlein, M.; Petit-Haertlein, I.; Mitschler, A.; Fisher, S. J.; Cousido-Siah, A.; Salvay, A. G.; Popov, A.; Muller-Dieckmann, C.; Petrova, T.; Podjarny, A. J. Mol. Recognit. 2011, 24, 724.   DOI
33 Hanada, Y.; Nishimiya, Y.; Miura, A.; Tsuda, S.; Kondo, H. FEBS J. 2014, 281, 3576.   DOI
34 Lee, J. K.; Park, K. S.; Park, S.; Park, H.; Song, Y. H.; Kang, S. H.; Kim, H. J. Cryobiology 2010, 60, 222.   DOI
35 Do, H.; Lee, J. H.; Lee, S. G.; Kim, H. J. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 806.   DOI
36 Scotter, A. J.; Marshall, C. B.; Graham, L. A.; Gilbert, J. A.; Garnham, C. P.; Davies, P. L. Cryobiology 2006, 53, 229.   DOI
37 Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272.   DOI
38 Ritchie, D. W.; Venkatraman, V. Bioinformatics 2010, 26, 2398.   DOI
39 Lawrence, M. C.; Colman, P. M. J. Mol. Biol. 1993, 234, 946   DOI
40 Graham, L. A.; Marshall, C. B.; Lin, F. H.; Campbell, R. L.; Davies, P. L. Biochemistry 2008, 47, 2051.   DOI
41 Mok, Y. F.; Lin, F. H.; Graham, L. A.; Celik, Y.; Braslavsky, I.; Davies, P. L. Biochemistry 2010, 49, 2593.   DOI
42 Lin, F. H.; Davies, P. L.; Graham, L. A. Biochemistry 2011, 50, 4467.   DOI
43 Sun, T.; Lin, F. H.; Campbell, R. L.; Allingham, J. S.; Davies, P. L. Science 2014, 343, 795.   DOI
44 Cheng, J.; Hanada, Y.; Miura, A.; Tsuda, S.; Kondo, H. Biochem. J. 2016, 473, 4011.   DOI