Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.6.311

A DFT Study on Alkali and Alkaline Earth Metal Encapsulated Fullerene-Like BeO Cluster  

Ravaei, Isa (Chemistry Department, Faculty of Sciences, Yasouj University)
Beheshtian, Javad (Chemistry Department, Faculty of Sciences, Shahid Rajaee University)
Publication Information
Abstract
By using Density Functional Theory (DFT), we have performed alkali metal and alkaline earth metal inside fullerene-like BeO cluster (FLBeOC) in terms of energetic, geometric, charge transfer, work function and electronic properties. It has been found that encapsulated processes of the alkali metal are exothermic and thermodynamically more favorable than alkaline earth metal encapsulation, so that interaction energy ($E_{int}$) of the alkali metal encapsulation FLBeOC is in the range of -0.02 to -1.15 eV at level of theory. It is found that, the electronic properties of the pristine fullerene-like BeO cluster are much more sensitive to the alkali metal encapsulation in comparison to alkaline earth metal encapsulation. The alkali and alkaline earth metal encapsulated fullerene-like BeO cluster systems exhibit good sensitivity, promising electronic properties which may be useful for a wide variety of next-generation nano-sensor device components. The encapsulation of alkali and alkali earth metal may increase the electron emission current from the FLBeOC surface by reducing of the work function.
Keywords
Fullerene-like BeO cluster; Alkali and alkaline earth metal; Encapsulation; Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iijima, S. Nature 1991, 354, 56.   DOI
2 Nanotubes, C. Topics in Applied Physics 2001, 80, 113.
3 Dai, H. Accounts of Chemical Research 2002, 35, 1035.   DOI
4 Chadli, H.; Fergani, F.; Bentaleb, M.; Fakrach, B.; Sbai, K.; Rahmani, A.; Bantignies, J.-L.; Sauvajol, J.-L. Physica E: Low-dimensional Systems and Nanostructures 2015, 71, 31.   DOI
5 Sbai, K.; Rahmani, A.; Fakrach, B.; Chadli, H.; Benhamou, M. Physica E: Low-dimensional Systems and Nanostructures 2014, 56, 312.   DOI
6 Beheshtian, J.; Soleymanabadi, H.; Peyghan, A. A.; Bagheri, Z. Applied Surface Science 2013, 268, 436.   DOI
7 Ren, L.; Cheng, L.; Feng, Y.; Wang, X. The Journal of Chemical Physics 2012, 137, 014309.   DOI
8 Wu, W.; Lu, P.; Zhang, Z.; Guo, W. ACS Applied Materials Interfaces 2011, 3, 4787.   DOI
9 Bayani, A. H.; Shahtahmassebi, N.; Fakhrabad, D. V. Physica E: Low-dimensional Systems and Nanostructures 2013, 53, 168.   DOI
10 Liu, J.; Zhong, D.; Xie, F.; Sun, M.; Wang, E.; Liu, W. Chemical Physics Letters 2001, 348, 357.   DOI
11 Sorokin, P.; Fedorov, A.; Chernozatonskii, L. Physics of the Solid State 2006, 48, 398.   DOI
12 He, J.; Wu, K.; Sa, R.; Li, Q.; Wei, Y. Applied Physics Letters 2010, 97, 051901.   DOI
13 Tsuji, M.; Abe, M. Solvent Extraction and Ion Exchange 1984, 2, 253.   DOI
14 Corma, A.; Iborra, S. Advances in Catalysis 2006, 49, 239.
15 Barsan, N.; Koziej, D.; Weimar, U. Sensors and Actuators B: Chemical 2007, 121, 18.   DOI
16 Salm, C.; Van Veen, D.; Gravesteijn, D.; Holleman, J.; Woerlee, P. Journal of the Electrochemical Society 1997, 144, 3665.   DOI
17 Joshi, K.; Jain, R.; Pandya, R.; Ahuja, B.; Sharma, B. The Journal of Chemical Physics 1999, 111, 163.   DOI
18 Sahariah, M. B.; Ghosh, S. Journal of Applied Physics 2010, 107, 083520.   DOI
19 Baumeier, B.; Kruger, P.; Pollmann, J. Physical Review B 2007, 75, 045323.   DOI
20 Ivanov, V.; Kirm, M.; Pustovarov, V.; Kruzhalov, 2007, 42, 742.
21 Fathalian, A.; Moradian, R.; Shahrokhi, M. Solid State Communications 2013, 156, 1.   DOI
22 Popov, A. A.; Yang, S.; Dunsch, L. Chemical Reviews 2013, 113, 5989.   DOI
23 Baima, J.; Erba, A.; Rerat, M.; Orlando, R.; Dovesi, R. The Journal of Physical Chemistry C 2013, 117, 12864.   DOI
24 Lifshitz, C. Mass Spectrometry Reviews 1993, 12, 261.   DOI
25 Ansari, R.; Sadeghi, F. Physica E: Low-dimensional Systems and Nanostructures 2015, 69, 1.   DOI
26 Matxain, J. M.; Eriksson, L. A.; Formoso, E.; Piris, M.; Ugalde, J. M. The Journal of Physical Chemistry C 2007, 111, 3560.
27 Deng, Q.; Popov, A. A. Journal of the American Chemical Society 2014, 136, 4257.   DOI
28 Behzadi, H.; Esrafili, M. D.; Manzetti, S.; Roonasi, P. Physica E: Low-dimensional Systems and Nanostructures 2014, 56, 69.   DOI
29 Li, J.; Yang, G. The Journal of Physical Chemistry C 2009, 113, 18292.   DOI
30 Anota, E. C.; Cocoletzi, G. H. Journal of Molecular Graphics and Modelling 2013, 42, 115.   DOI
31 Yu, B.-R.; Yang, J.-W.; Guo, H.-Z.; Ji, G.-F.; Chen, X.-R. Physica B: Condensed Matter 2009, 404, 1940.   DOI
32 Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.   DOI
33 Ma, L.-C.; Zhao, H.-S.; Yan, W.-J. Journal of Magnetism and Magnetic Materials 2013, 330, 174.   DOI
34 Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. Journal of Computational Chemistry 1993, 14, 1347.   DOI
35 Sun, W.; Bu, Y.; Wang, Y. The Journal of Physical Chemistry C 2011, 115, 3220.   DOI
36 Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Montgomery Jr, J.; Vreven, T.; Kudin, K.; Burant, J. Gaussian 03, rev. C. 02, Gaussian, Inc., Wallingford CT, (2004).
37 Hohenstein, E. G.; Chill, S. T.; Sherrill, C. D. Journal of Chemical Theory and Computation 2008, 4, 1996.   DOI
38 Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. The Journal of Physical Chemistry A 2001, 105, 8111.   DOI
39 Umadevi, D.; Sastry, G. N. ChemPhysChem 2013, 14, 2570.   DOI
40 Zhao, Y.; Truhlar, D. G. Theoretical Chemistry Accounts 2008, 120, 215.   DOI
41 O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Journal of Computational Chemistry 2008, 29, 839.   DOI
42 Okumura, M.; Kitagawa, Y.; Haruta, M.; Yamaguchi, K. Chemical Physics Letters 2001, 346, 163.   DOI
43 Mills, G.; Gordon, M. S.; Metiu, H. Chemical Physics Letters 2002, 359, 493.   DOI
44 Simchi, H.; Esmaeilzadeh, M.; Saani, M. H. Physica E: Low-dimensional Systems and Nanostructures 2012, 44, 1675.   DOI
45 Geerlings, P.; De Proft, F.; Langenaeker, W. Chemical Reviews 2003, 103, 1793.   DOI
46 Mulliken, R. The Journal of Chemical Physics 1955, 23, 1841.   DOI
47 Baumeier, B.; Krüger, P.; Pollmann, J. Physical Review B 2007, 76, 085407.   DOI
48 Buffinger, D.; Ziebarth, R.; Stenger, V.; Recchia, C.; Pennington, C. Journal of the American Chemical Society 1993, 115, 9267.   DOI
49 Shinde, R.; Tayade, M. The Journal of Physical Chemistry C 2014, 118, 17200.   DOI
50 Karamanis, P.; Pouchan, C. The Journal of Physical Chemistry C 2012, 116, 11808.   DOI
51 Li, Y.; Zhou, G.; Li, J.; Gu, B.-L.; Duan, W. The Journal of Physical Chemistry C 2008, 112, 19268.   DOI
52 Chandrakumar, K.; Ghosh, S. K. Nano Letters 2008, 8, 13.   DOI
53 Peyghan, A. A.; Hadipour, N. L.; Bagheri, Z. Journal of Physical Chemistry C 2013, 117, 2427.