Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.2.57

The Phase Transition and Thermochromic Characteristics of W/Mg-codoped Monoclinic VO2 Nanoparticle and Its Composite Film  

Park, Heesun (Department of Chemistry, Pukyong National University)
Kim, Jongmin (Department of Chemistry, Pukyong National University)
Jung, Young Hee (Research Laboratory, Mapro, Inc. Hanlim)
Kim, Yeong Il (Department of Chemistry, Pukyong National University)
Publication Information
Abstract
Monoclinic $VO_2(M)$ nanoparticles codoped with 1.5 at. % W and 2.9 at. % Mg were synthesized by the hydrothermal treatment and post-thermal transformation method of $V_2O_5-H_2C_2O_4-H_2O$ with $Na_2WO_4$ and $Mg(NO_3)_2$. The composite thin film of the W/Mg-codoped $VO_2(M)$ with a commercial acrylic block copolymer was also prepared on PET substrate by wet-coating method. The reversible phase transition characteristics of the codoped $VO_2(M)$ nanoparticles and the composite film were investigated from DSC, resistivity and Vis-NIR transmittance measurements compared with the undoped and Wdoped $VO_2(M)$ samples. Mg-codoping into W-doped $VO_2(M)$ nanoparticles synergistically enhanced the transition characteristics by increasing the sharpness of transition while the transition temperature ($T_c$) lowered by W-doping was maintained. The codoped composite film showed the prominently enhanced NIR switching efficiency compared to only W-doped $VO_2(M)$ film with a lowered $T_c$.
Keywords
Monoclinic $VO_2$; Thermochromic; Semiconductor-to-metal phase transition; W/Mg-codoping; NIR switching efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (a) Kamalisarvestani, M; Saidur, R.; Mekhilef, S.; Javadi, F. S. Ren. Sust. Ener. Rev. 2013, 26, 353.   DOI
2 (b) Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Kanehira, M.; Cao, C. Nano Ener. 2012, 1, 221.   DOI
3 (c) Granqvist, C. G.; Lansaker, P. C.; Mlyuka, N. R.; Niklasson, G. A.; Avendano, E. Sol. Energy. Mater. Sol. Cells 2009, 93, 2032.   DOI
4 Morin, F. J. Phys. Rev. 1959, 3, 34.
5 Takei, H.; Koide, S. J. Phys. Soc. Japan 1966, 21, 1010.   DOI
6 Koide, S.; Takei, H. J. Phys. Soc. Japan 1967, 22, 946.   DOI
7 Livage, J. Solid State Ionics 1996, 86, 935.
8 Dachuan, Y.; Niankan, X.; Jingyu, Z.; Xiulin, Z. J. Phys. D: Appl. Phys. 1996, 29, 1051.   DOI
9 Fuls, E. N.; Hensler, D. H.; Ross, A. R. Appl. Phys. Lett 1967, 10, 199.   DOI
10 (a) Goodenough, J. B. J. Solid State Chem. 1971, 3, 490.   DOI
11 (a) Horlin, T.; Nikelwski, T.; Nygren, M. Mat. Res. Bull. 1972, 7, 1515.   DOI
12 (b) Tang, C; Georgopoulos, P.; Fine, M. E. Cohen, J. B. Phys. Rev. B 1985, 15, 31.
13 (c) Sobhan, M. A.; Kivaisi, R. T.; Stjerna, B.; Granqvist, C. G. Sol. Energy Mater. Sol. Cells 1996, 44, 451.   DOI
14 (d) Li, G.; Chao, K.; Peng, H.; Chen, K.; Zhang, Z. Inorg. Chem. 2007, 46, 5787.   DOI
15 (a) Burkhardt, W.; Christmann, T.; Meyer, B. K.; Niessner, W.; Schalch, D.; Scharmann, A. Thin Solid Films 1999, 345, 229.   DOI
16 (b) Kiri, P.; Warwick, M. E. A.; Ridley, I.; Binions, R. Thin Solid Films 2011, 520, 1363.   DOI
17 (c) Dai, L.; Chen, S.; Liu, J.; Gao, Y.; Zhou, J.; Chen, Z.; Cao, C.; Luo, H.; Kanehira, M. Phys. Chem. Chem. Phys. 2013, 15, 11723.   DOI
18 (c) Zhou, J.; Gao, Y.; Liu, X.; Chen, Z.; Dai, L.; Cao, C.; Luo, H.; Kanahira, M.; Sun, C.; Yan, L. Phys. Chem. Chem. Phys. 2013, 15, 7505.   DOI
19 (a) Mlyuka, N. R.; Niklasson, G. A.; Granqvist, C. G. Appl. Phys. Lett. 2009, 95, 171909.   DOI
20 (b) Li, S.-Y.; Mlyuka, N. R.; Primetzhofer, D.; Hallen, A.; Possnert, G.; Niklasson, G. A. Granqvist, C. G. App. Phys. Lett. 2013, 103, 161907.   DOI
21 (a) Takahashi, I.; Hibino, M.; Kudo, T. J. Appl. Phys. 2001, 40, 1391.   DOI
22 (b) Burkhardt, W.; Christmann, T.; Franke, S.; Kriegseis, W.; Meister, D.; Meyer, B. K.; Niessner, W.; Schalch, D.; Scharmann, A. Thin Solid Films 2002, 402, 226.   DOI
23 (c) Soltani, M.; Chaker, M.; Haddad, E.; Kruzelecky, R. V.; Margot, J. Appl. Phys. Lett. 2004, 85, 1958.   DOI
24 (e) Kong, F. Y.; Li, M.; Zhang, J.; Xu, Y.; Li, D. B.; Zeng, Z.; Li, G. H. Open J. of Adv. Mater. Res. 2013, 1, 1.   DOI
25 Wang, N.; Liu, S.; Zeng, X. T.; Magdassi, S.; Long, Y. J. Mater. Chem. C 2015, 3, 6771.   DOI
26 (a) Alie, D; Gedvilas, L.; Wang, Z.; Tenent, R.; Engtrakul, C.; Yan, Y.; Shaheen, S. E.; Dilon, A. C.; Ban, C. J. Solid State Chem. 2014, 212, 237.   DOI
27 (b) Ji, S.; Zhao, Y.; Zhang, F.; Jun, P. J. Crys. Growth 2010, 312, 282,   DOI
28 (d) Zhang, Y.; Zhang, J.; Zhang, X.; Deng, Y.; Zhong, Y.; Huang, C.; Liu, X.; Liu, X.; Mo, S. Ceram. Int. 2013, 39, 8363.   DOI
29 (a) Zhang, K.-F.; Liu, X.; Su, Z.-X.; Li, H.-L. Mater. Lett. 2007, 61, 2644   DOI
30 (b) Liu, X.; Xie, G.; Huang, C.; Xu, Q.; Zhang, Y.; Luo, Y. Mater. Lett. 2008, 62, 1878   DOI
31 (d) Jiazhen, Y.; Yue, Z.; Wanxia, H. Thin Solid Films 2008, 516, 8554.   DOI
32 (c) Li, G.; Chao, K.; Peng, H.; Chen, K.; Zhang, Z. Inorg. Chem. 2007, 46, 5787.   DOI
33 JCPDS 81-2392.
34 JCPDS 43-1051, 72-0514, 82-0661.
35 (a) Horlin, T.; Niklewski, T.; Nygren, M. Mater. Res. Bull. 1973, 8, 179.   DOI
36 (b) Parkin, I.; Manning, T. D. J. Chem. Educ. 2006, 83, 393.   DOI
37 (c) Chae, B. G.; Kim, H. T.; Yun, S. J. Electrochem. Solid-State Lett. 2008, 11, 53.
38 Lopez, R.; Haynes, T. E.; Boatner, L. A.; Feldman, L. C.; Haglund, R. F. Phys. Rev. B: Condens. Matter, 2002, 65, 224113.   DOI
39 Verleur, H.; Barker, A. Berglund, C. Phys. Rev. 1968, 172, 788.   DOI
40 (b) Beteile, F.; Livage, J. J. Sol-Gel Sci. Technol. 1998, 13, 915.   DOI
41 (c) Ji, S.; Zhang, F.; Jin, P. Res. Chem. Intermed. 2011, 37, 493.   DOI