Browse > Article
http://dx.doi.org/10.5012/jkcs.2015.59.5.387

Theoretical Study for the Structures and Binding Energies of HOOO-(H2O)n (n=1~5) Cluster  

Kim, Jong-Min (Department of Chemistry, HanNam University)
Hong, Sung-Yoon (Department of Chemistry, HanNam University)
Kim, Seung-Joon (Department of Chemistry, HanNam University)
Publication Information
Abstract
The DFT and ab initio calculations have been performed to elucidate hydrogen interaction of HOOO-(H2O)n (n=1~5) clusters. The optimized geometries, harmonic vibrational frequencies, and binding energies are predicted at various levels of theory. The trans conformer of HOOO monomer is predicted to be thermodynamically more stable than cis form at the CCSD(T) level of theory. For HOOO-(H2O)n clusters, the geometries are optimized at B3LYP/aug-cc-pVTZ and CAM-B3LYP/aug-cc-pVTZ levels of theory. The binding energy of HOOO-H2O cluster is predicted to be 6.05 kcal/mol at the MP2//CAM-B3LYP/ aug-cc-pVTZ level of theory after zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) correction. The average binding energy per H2O is increased according to adding a H2O moiety in HOOO-(H2O)n clusters up to 7.2 kcal/mol for n=5.
Keywords
HOOO$(H_2O)_n$ cluster; DFT; H-bond interaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
2 Song, H.-S.; Seo, H.-I.; Shin, C.-H.; Kim, S.-J. J. Korean Chem. Soc. 2015, 59, 117.   DOI
3 Aloisio, S.; Francisco, J. S. J. Am. Chem. Soc. 1999, 121, 8592.   DOI
4 Chalmet, S.; Ruiz-López, M. F. Chem. Phys. Chem. 2006, 7, 463.   DOI
5 Cannon, D.; Tuttle, T.; Koller, J.; Plesničar, B. Comp. Theor. Chem. 2013, 1010, 19.   DOI
6 Liang, T.; Raston, P. L.; Douberly, G. E. Chem. Phys. Chem. 2013, 14, 764.   DOI
7 Anglada, J. M.; Hoffman, G. J.; Slipchenko, L. Y.; Costta, M. M.; Ruiz-López, M. F.; Francisco, J. S. J. Phys. Chem. A 2013, 117, 10381.   DOI
8 (a) Becke, A. D. J. Chem. Phys., 1993, 98, 5648.   DOI
9 (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
10 Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.   DOI
11 (a) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.   DOI
12 (b) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.   DOI
13 Boys, S. F.; Bernardi, F.; Boys, S.F.; Bernardi, F. Mol. Phys. 1970, 19, 553.   DOI
14 Yu, H. G.; Varandas, A. J. C. Chem. Phys. Lett. 2001, 334, 173.   DOI
15 Cacace, F.; Cipollini, R.; de Petris, G.; Troiani, A. J. Mass Spectrum. 2003, 228, 717.   DOI
16 Fabian, W. M. F.; Kalcher, J.; Janoschek, R. Theor. Chem. Acc. 2005, 114, 182.   DOI
17 Mansergas, A.; Anglada, J. M.; Olivella, S.; Ruiz-Lopez, M. F.; Martins-Costa, M. Phys. Chem. Chem. Phys. 2007, 9, 5865.   DOI
18 Varner, M. E.; Harding, M. E.; Gauss, J.; Stanton, J. F. Chem. Phys. 2008, 346, 53.   DOI
19 Denis, P. A.; Ornellas, F. R. J. Phys. Chem. A 2009, 113, 499.   DOI
20 Varner, M. E.; Harding, M. E.; Vázquez, J.; Gauss, J.; Stanton, J. F. J. Phys. Chem. A 2009, 113, 11238.   DOI
21 Anglada, J. M.; Olivella, S.; Solé, A. J. Chem. Theory Comput. 2010, 6, 2743.   DOI
22 Varandas, A. J. C. Phys. Chem. Chem. Phys. 2011, 13, 9796.   DOI
23 Varandas, A. J. C. Phys. Chem. Chem. Phys. 2011, 13, 15619.   DOI
24 Beames, J. M.; Lester, M. I.; Murray, C.; Varner, M. E.; Stanton, J. F. J. Chem. Phys. 2011, 134, 044304.   DOI
25 Cerkovnik, J.; Plesničar, B. Chem. Rev. 2013, 113, 7930.   DOI
26 Varandas, A. J. C. J. Chem. Theory Comput. 2012, 8, 428.   DOI
27 Liang, T.; Magers, D. B.; Raston, P. L.; Allen, W. D.; Douberly, G. E. Chem. Phys. Lett. 2013, 4, 3584.   DOI
28 Hoy, E. P.; Schwerdtfeger, C. A.; Mazziotti, D. A. J. Phys. Chem. A 2013, 117, 1817.   DOI
29 M. Speranza. J. Phys. Chem. A 1998, 102, 7535.
30 Cacace, F. Science 1999, 285, 81.   DOI
31 Nelander, B.; Engdahl, A.; Svensson, T. Chem. Phys. Lett. 2000, 332, 403.   DOI
32 Suma, K.; Sumiyoshi, Y.; Endo, Y. Science 2005, 308, 1885.   DOI
33 Cooper, P. D.; Moore, M. H.; Hudson, R. L. J. Phys. Chem. A 2006, 110, 7985.
34 (a) Derro, E. L.; Murray, C.; Sechler, T. D.; Lester, M. I. J. Phys. Chem. A 2007, 111, 11592.
35 (b) Murray, C.; Derro, E. L.; Sechler, T. D.; Lester, M. I. J. Phys. Chem. A 2007, 111, 4727.   DOI
36 Derro, E. L.; Sechler, T. D.; Murray, C.; Lester, M. I. J. Phys. Chem. A 2008, 128, 244313.   DOI
37 Le Picard, S. D.; Tizniti, M.; Canosa, A.; Sims, I. R.; Smith, I. W. M. Science 2010, 328, 1258.   DOI
38 Raston, P. L.; Liang, T.; Douberly, G. E. J. Chem. Phys. 2012, 137, 184302.   DOI
39 McCarthy, M. C.; Lattanzi, V.; Kokkin, D.; Martinez, O. J. Chem. Phys. 2012, 136, 034303.   DOI
40 Mathisen, K. B.; Siegbahn, P. E. M. Chem. Phys. 1984, 90, 225.   DOI
41 Vincent, M. A.; H. Hillier, I.; Burton, N. A. Chem. Phys. Lett. 1995, 233, 111.   DOI
42 Jungkamp, T. P. W.; Seinfeld, J. H. Chem. Phys. Lett. 1996, 257, 15.   DOI
43 Cannon, D.; Tuttle, T.; Koller, J.; Plesničar, B. Comp. Theor. Chem. 2013, 1010, 19.   DOI
44 Yang, J.; Yang, X. Comp. Theor. Chem. 2014, 1034, 53.   DOI