Browse > Article
http://dx.doi.org/10.5012/jkcs.2012.56.2.228

Spectrophotometric Quantitative Analysis of Cu(II) Ion Using N,N'-bis(4-methoxysalicylidene)phenylendiamine  

Kim, Sun-Deuk (Department of Chemistry and Applied Chemistry, Deagu University)
Seol, Jong-Min (Department of Chemistry and Applied Chemistry, Deagu University)
Publication Information
Abstract
A $N_2O_2$ Schiff base ligand, N,N'-bis(4-methoxysalicylidene)phenylendiamine (4-$CH_3O$-salphen) was synthesized. Using the 4-$CH_3O$-salphen, the spectrophoto-metric quantitative analysis of Cu(II) ion in aqueous solution was performed. The optimum condition for the quantitative analysis of Cu(II) ion was determined as the following; the concentration of 4-$CH_3O$-salphen is $2.0{\times}10^{-4}\;mol/L$, ratio between solvent DMSO and water is 50/50(v/v), pH is 5.5. After 1 hr water incubation at $55^{\circ}C$ and then the absorbance measurements at 388 nm, a calibration curve (${\varepsilon}=3.6{\times}10^4\;mol^{-1}cm^{-1}$) with a correlation coefficient ($R^2$=0.9963) was obtained in this condition. Using this optimized condition, the quantitative analysis of Cu(II) ion was performed with various samples such as hot spring water, semiconductor factory waste water and treated water from sewage treatment plant. The average value of the measured values agreed well with standard value with a range of 0.6~5.4%. The limit of determination was 31.77 ng/mL ($5.0{\times}10^{-7}\;mol/L$).
Keywords
4-$CH_3O$-salphen; Spectrophotometric quantitative analysis of Cu(II); Limit of determination;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy, 3rd ed.; Thomson Corporation Korea Limited and SciPlus: 2007; pp 636-644.
2 Marczenko, Z. Separation and Spectrophotometric Determination of Elements, Ellis Horwood Limited; John Wiley & Sons: New York, 1986; pp 257-268.
3 Cimerman, Z.; Galic, N.; Bosner, B. Anal. Chim. Acta 1997, 343, 145.   DOI
4 Ishii, H.; Einaga, H. Analyst 1969, 94, 1038.   DOI
5 Ishii, H.; Einaga, H. Bunseki Kagaku 1969, 18, 230.   DOI
6 J-S.; Jung, D-I.; Lee, I-H. Anal. Sci. Technol. 1991, 4(2), 163.
7 Kim, Y-N.; Choi, K-S.; Lee, I-H.; Bark, K-M.; Chung, R-J. J. Kor. Chem. Soc. 1992, 36(1), 95.
8 Kabak, M.; Elmali, A.; J. Phys. 1998, 22, 797.
9 Oyaizu, K.; Tsuchida, E.; Inorg. Chim. Acta 2003, 355, 414.   DOI
10 Nabei, A.; Kuroda-Sowa, T.; Okubo, T.; Maekawa, M.; Munakata, M. Inorg. Chim. Acta 2008, 361, 3489.   DOI   ScienceOn
11 Mingxing, Q.; Mei, W.; Ren, H. J. Molecular Catalysis A: Chemical 2000, 160, 243.   DOI   ScienceOn
12 Gholiveand, M. B.; Ahmadi, F.; Rafiee, E. Electroanalysis 18 2006, 16, 1620.
13 Giacomelli, A.; Rotunno, T.; Senatore, L. Inorg. Chem. 1985, 24, 1303.   DOI
14 Kim, E-J.; Kim, Y-S.; Choi, J-M. Bull. Korean Chem. Soc. 2008, 29(1), 99.   DOI
15 Kim, S-D.; Seol, J-M. J. Kor. Chem. Soc. 2011, 55(3), 463.   DOI
16 Aggett, J.; Richardson, R. A. Anal. Chim. Acta 1970, 50, 269.   DOI   ScienceOn
17 Aggett, J.; Khoo, A. W.; Richardson, R. A. J. Inorg. Nucl. Chem. 1981, 43, 1867.   DOI   ScienceOn
18 Kim, Y-S.; In, G.; Kim, M-S.; Choi, J-M. Bull. Korean Chem. Soc. 2006, 27(11), 1757.   DOI
19 Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E. Standard Methods for the Examination of Water and Wastewater, 19th ed.; A.P.H.A.: Washington, DC 2005, 1995; pp 1-21-1-23.
20 Buffle, J. Complexation Reactions in Aquatic Systems: An Analytical Approach; Ellis Horwood: Chichester, UK, 1990; pp 1-15.
21 Fu, D.; Yuan, D. Spectrochim. Acta, Part A 2007, 66, 434.   DOI   ScienceOn
22 Kenduzler, E.; Turuker, A. R. Anal. Chim. Acta 2003, 408, 163.
23 Ghiasvand, A. R.; Ghaderi, R.; Kakanejadifard, A. Talanta 2004, 287.
24 Szigeti, Z.; Bitter, I.; Toch, K.; Latkoczy, C.; Fliegel, D. J.; Gunther, D.; Pretsch, E. Anal. Chim. Acta 2005, 532, 129.   DOI   ScienceOn
25 Tabrizi, A. B. J. Hazardous Materials 2007, 139, 260.   DOI   ScienceOn