Browse > Article
http://dx.doi.org/10.5012/jkcs.2011.55.1.007

The Effect of Exchange and Correlation on Properties of Carbon Nanotube Structure: A DFT study  

Bakhshi, K. (Science and Research Branch, Islamic Azad University)
Mollaamin, F. (Department of Chemistry, Qom Branch, Islamic Azad University)
Monajjemi, M. (Department of Chemistry, Science and Research Branch, Islamic Azad University)
Publication Information
Abstract
As an aid towards improving the treatment of exchange and correlation effects in electronic structure calculations, it is desirable to have a clear picture of concepts of exchange-correlation functionals in computational calculations. For achieving this aim, it is necessary to perform different theoretical methods for many groups of materials. We have performed hybrid density functional theory (DFT) methods to investigate the density charges of atoms in rings and cages of carbon nanotube. DFT methods are engaged and compared their results. We have also been inclined to see the impression of exchange and correlation on nuclearnuclear energy and electron-nuclear energy and kinetic energy. With due attention to existence methods, B3P86, B3PW91, B1B96, BLYP and B3LYP have used in this work.
Keywords
Density Functional Theory; Carbon nanotube; Exchange; Correlation;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864.   DOI
2 Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133.   DOI
3 The Challenge of d and f Electrons; Salahub, D. R., Zerner, M. C., Eds.; ACS: Washington, D.C., 1989.
4 Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules; Oxford Univ. Press: Oxford, 1989.
5 Pople, J. A.; Gill, P. M. W.; Johnson, B. G. Chemical Physcs Letters 1992, 199, 557.   DOI
6 Johnson, B. G.; Frisch, M. J. J. Chem. Phys. 1994, 100, 7429.   DOI
7 Johnson, B. G.; Frisch, M. J. Chem. Phys. Lett. 1993, 216, 133.   DOI
8 Stratmann, R. E.; Burant, J. C.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1997, 106, 10175.   DOI
9 Monajjemi, M.; Baei, M. T.; Mollaamin, F. Russian Journal of Inorganic Chemistry 2008, 53(9), 1430.   DOI
10 Monajjemi, M.; Mahdavian, L.; Mollaamin, F. Bull. Chem. Soc. Ethiop. 2008, 22(2), 1.
11 Monajjemi, M.; Mollaamin, F.; Gholami. Main Group Metal Chemistry 2003, 26(6), 349.
12 Shabani, M.; Monajjemi, M.; Aghai. H. Journal of Chemical Research-S 2003, 5, 249.
13 Vosko, S. H.; Wilk, L.; Nusair, M. Canadian J. Phys. 1980, 58, 1200.   DOI
14 Lee, C.; Yang, W.; Parr, R. G. Physical Review 1988, B 37, 785.
15 Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.   DOI
16 Perdew, J. P. Phys. Rev. 1986, B33, 8822.
17 Becke, A. D. J. Chem. Phys.1993, 98, 5648.   DOI
18 Menon, M.; Richter, E.; Subbaswamy, K. R. J. Chem. Phys. 1996, 104(15), 5875.   DOI
19 Hamada, N.; Sawada, S.; Oshiyama, A. Phys. Rev. Lett. 1992, 78(10), 1579.
20 Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Appl. Phys. Lett. 1992, 60, 2204.   DOI
21 Blase, X.; Benedict, L. X.; Shirley, E. L.; Louie, S. G. Phys. Rev. Lett. 1994, 72(12), 1878.   DOI
22 Robertson, D. H.; Brenner, D. W.; Mintmire, J. W. Phys. Rev. B. 1992, 45(21), 12592.   DOI
23 Yakobson, B. I.; Campbell, M. P.; Brabec, C. J.; Bernholc, J. Comp. Mater. Sci. 1997, 8(5), 341.   DOI
24 Richter, E.; Subbaswamy, K. R. Phys. Rev. Lett. 1997, 79(14), 2738.   DOI
25 Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. J. Chem. Phys. 1996, 104(5), 2089.   DOI
26 Tersoff, J.; Ruoff, R. S. Phys. Rev. Lett. 1994, 73(5), 676.   DOI
27 Ariafard, A.; Fazaeli, R.; Aghabozorg, H. R.; Monajjemi, M. Journal of Molecular Structure-theochem. 2003, 625, 305.   DOI
28 Ruoff, R. S.; Tersoff, J.; Lorents, D. C.; Subramoney, S.; Chan, B. Nature 1993, 364, 514.   DOI
29 Lee, V. S.; Nimmanpipug, P.; Mollaamin, F.; Kungwan, N.; Thanasanvorakun, S.; Monajjemi, M. Russian Journal of Physical Chemistry A 2009, 83(13), 2288.   DOI
30 Monajjemi, M.; Mahdavian, L.; Mollaamin, F.; Khaleghian, M. Russian Journal of Inorganic Chemistry 2009, 54(9), 1465.   DOI
31 Moradi, O.; Aghaie, M.; Zare, K.; Monajjemi, M.; Aghaie, H. Journal of Hazardous Materials 2009, 170, 673.   DOI   ScienceOn
32 Mollaamin, F.; Baei, M. T.; Monajjemi, M.; Zhiani, R.; Honarparvar, B. Russian Journal of Physical Chemistry A 2008, 82(13), 2354.   DOI
33 Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fisher, J. E.; Smalley, R. E. Science 1996, 273, 483.   DOI   ScienceOn
34 Iijima, S. Nature 1991, 354, 56.   DOI
35 Iijima, S.; Ichlhashi, T. Nature 1993, 363, 603.   DOI
36 Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.   DOI
37 Krotov, Y. A.; Lee D.-H.; Louie, S. G. Phys. Rev. Lett. 1997, 78(22), 4245.   DOI
38 Tuzun, R. E.; Noid, D. W.; Sumpter, B. G.; Merkle, R. C. Nanotechnology 1996, 7(3), 241.   DOI
39 Ihara, S.; Itoh, S Surf. Rev. Lett. 1996, 3(1), 827.   DOI
40 Chopra, N. G.; Benedict, L. X.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Nature 1996, 377, 135.