Browse > Article
http://dx.doi.org/10.5012/jkcs.2003.47.5.472

Cure Kinetics and Mechanical Interfacial Characteristics of Zeolite/DGEBA Composites  

Soo-Jin Park (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Young-Mi Kim (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Jae-Sup Shin (Department of Chemistry, Chungbuk National University)
Publication Information
Abstract
In this work, the zeolite/diglycidylether of bisphenol A(DGEBA) systems were investigated in terms of the cure kinetics and mechanical interfacial properties of the composites. The 4, 4-diamino diphenyl methane(DDM) was used as a curing agent for epoxy. Two types of zeolite(PZ) were prepared with 15 and 35 wt% KOH treatments(15-BZ and 35-BZ, respectively) for 24 h, and their surface characteristics were studied by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD). Cure kinetics of the composites were examined in the context of differential scanning calorimetry(DSC), and mechanical interfacial properties were investigated in critical stress intensity factor($K_{IC}$) and critical strain energy release rate($G_{IC}$). In the results of XPS and XRD, sodium ion(Na) of zeolite was exchanged for potassium ion(K), resulting from the treatment of KOH. Also, $Si_{2p}/Al{2p}$ composition ratios of the treated zeolite were increased, which could be attributed to the weakening of Al-O bond in framework. Cure activation energy($E_a$) of 15-BZ composites was decreased, whereas KIC and $G_{IC}$ were increased, compared with those of the pure zeolite/DGEBA composites. It was probably accounted that the acidity of zeolite was increased by surface treatments and the cure reaction between zeolite and epoxy was influenced on the increased acidity of zeolite.
Keywords
Zeolite; Diglycidylether of Bisphenol A(DGEBA); Cure Kinetics; Mechanical Interfacial Properties; Surface Treatments;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Calson, T. A. Photoelectron and auger spectroscopy;2nd Ed.; Pleum Press: New York, 1978.
2 Bidstrup, S. U.; Macosko, C. W. J. Polym. Sci., Polym.Phys. Ed. 1990, 28, 691.   DOI
3 Cleveland, O. H. Handbook of chemistry and physics;Chemical Rubber Co., 1983.
4 Pressly, T. G.; Keskkula, H.; Paul, D. R. Polymer 2001,42, 3043.   DOI   ScienceOn
5 Kang, S. K.; Hong, S. I.; Choe, C. R.; Park, M.; Rim,S.; Kim, J. Polymer 2001, 42, 879.   DOI   ScienceOn
6 No, K. T.; Chon, H. Z.; Lee, T. K.; John, M. S. J. Phys.Chem. 1981, 85, 2065.   DOI
7 Vijayalakshmi, R.; Kapoor, S.; Kulshreshtha, S. K. SolidState Sciences 2002, 4, 489.   DOI   ScienceOn
8 Lee, J. Y.; Shim, M. J.; Kim, S. W. Mater. Chem. Phys.1997, 48, 36.   DOI   ScienceOn
9 Park, S. J.; Kim, T. J.; Lee, J. R. J. Polym. Sci. B:Polym. Phys. 2000, 38, 2114.   DOI   ScienceOn
10 Breck, D. W. Zeolite molecular sieve; John Wiley &Sons: New York, 1974.
11 Park, S. J. Encyclopedia of surface and colloid science:van der Waals interactions at surface; Hubbard, A. T.,Ed; Marcel Dekker: New York, 2002.
12 Cheng, K. C.; Chiu, W. Y. Macromolecules 1993, 26,4665.   DOI   ScienceOn
13 Kaushik, V. K.; Vijayalakshmi, R. P.; Choudary, N. V.;Bhat, S. G. T. Microporous Mesoporous Mater. 2002,51, 139.   DOI   ScienceOn
14 Park, S. J.; Donnet, J. B. J. Colloid Interface Sci. 1998,206, 29.   DOI   ScienceOn
15 Iranmahboob, J.; Hill, D. O.; Toghiani, H. App. Catal.A: Gen. 2002, 231, 99.   DOI   ScienceOn
16 Lee, H.; Neville, K. Handbook of epoxy resins; McGraw-Hill: New York, 1990.
17 Garcia-Martinez, J.; Cazorla-Amoros, D.; Linares-Solano,A.; Lin, Y. S. Microporous Mesoporous Mater. 2001,42, 255.   DOI   ScienceOn
18 Chau, J. L. H.; Tellez, C.; Yeung, K. L.; Ho, K. J.Membr. Sci. 2000, 164, 257.   DOI   ScienceOn
19 Kissinger, H. E. J. Res. Nat. Bureau Stand. 1956, 57,2712.
20 Park, S. J.; Seo, M. K.; Lee, J. R. J. Appl. Polym. Sci.2001, 79, 2299.   DOI   ScienceOn
21 Park, S. J.; Jang, Y. S. J. Colloid Interface Sci. 2001,237, 91.   DOI   ScienceOn
22 Kim, J. T.; Kim, M. C.; Okamato, Y.; Imanaka, T. J.Catal. 1989, 115, 319.   DOI   ScienceOn