Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.9.2699

Molecular Spinless Energies of the Modified Rosen-Morse Potential Energy Model  

Jia, Chun-Sheng (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University)
Peng, Xiao-Long (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University)
He, Su (Scientific Research Office, Southwest Petroleum Institute)
Publication Information
Abstract
We solve the Klein-Gordon equation with the modified Rosen-Morse potential energy model. The bound state energy equation has been obtained by using the supersymmetric shape invariance approach. The relativistic vibrational transition frequencies for the $6^1{\Pi}_u$ state of the $^7Li_2$ molecule have been computed by using the modified Rosen-Morse potential model. The calculated relativistic vibrational transition frequencies are in good agreement with the experimental RKR values.
Keywords
Klein-Gordon equation; Modified Rosen-Morse potential model; Vibrational transition; Lithium dimer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Steele, D.; Lippincott, E. R.; Vanderslice, J. T. Rev. Mod. Phys. 1962, 34, 239.   DOI
2 Rees, A. L. G. Proc. Phys. Soc. 1947, 59, 998.   DOI   ScienceOn
3 Tang, H. M.; Liang, G. C.; Zhang, L. H.; Zhao, F.; Jia, C. S. Can. J. Chem. 2014, 92, 341.   DOI
4 Grochola, A.; Jastrzebski, W.; Kowalczyk, P. Mol. Phys. 2008, 106, 1375.   DOI
5 Jedrzejewski-Szmek, Z.; Grochola, A.; Jastrzebski, W.; Kowalczyk, P. Chem. Phys. Lett. 2007, 444, 229.   DOI
6 Li, D.; Xie, F.; Li, L.; Lazoudis, A.; Lyyra, A. M. J. Mol. Spectrosc. 2007, 246, 180.   DOI
7 Alhaidari, A. D.; Bahlouli, H.; Al-Hasan, A. Phys. Lett. A 2006, 349, 87.   DOI   ScienceOn
8 Pekeris, C. L. Phys. Rev. 1934, 45, 98.   DOI
9 Witten, E. Nucl. Phys. B 1981, 185, 513.
10 Gendenshtein, L. E. Sov. Phys.-JETP Lett. 1983, 38, 356.
11 Cooper, F.; Khare, A.; Sukhatme, U. Phys. Rep. 1995, 251, 267.   DOI   ScienceOn
12 Dabrowska, J. W.; Khare, A.; Sukhatme, U. P. J. Phys. A: Math. Gen. 1988, 21, L195.   DOI   ScienceOn
13 Jia, C. S.; Wang, X. G.; Yao, X. K.; Chen, P. C.; Xiao, W. J. Phys. A: Math. Gen. 1998, 31, 4763.   DOI   ScienceOn
14 Morse, M. Phys. Rev. 1929, 34, 57.   DOI
15 Frost, A. A.; Musulin, B. J. Chem. Phys. 1954, 22, 1017.   DOI
16 Jia, C. S.; Diao, Y. F.; Liu, X. J.; Wang, P. Q.; Liu, J. Y.; Zhang, G. D. J. Chem. Phys. 2012, 137, 014101.   DOI   ScienceOn
17 Yi, L. Z.; Diao, Y. F.; Liu, J. Y.; Jia, C. S. Phys. Lett. A 2004, 333, 212.   DOI
18 Ibrahim, T. T.; Oyewumi, K. J.; Wyngaardt, S. M. Eur. Phys. J. Plus 2012, 127, 100.   DOI   ScienceOn
19 Wei, G. F.; Zhen, Z. Z.; Dong, S. H. Cent. Eur. J. Phys. 2009, 7, 175.
20 Qiang, W. C.; Dong, S. H. Phys. Lett. A 2008, 372, 4789.   DOI   ScienceOn
21 Kocak, G.; Taskin, F. Ann. Phys. (Berlin) 2010, 522, 802.   DOI   ScienceOn
22 Xu, Y.; He, S.; Jia, C. S. Phys. Scr. 2010, 81, 045001.   DOI   ScienceOn
23 Dong, S. H. Commun. Theor. Phys. 2011, 55, 969.   DOI   ScienceOn
24 Oluwadare, O. J.; Oyewumi, K. J.; Akoshile, C. O.; Babalola, O. A. Phys. Scr. 2012, 86, 035002.   DOI
25 Jia, C. S.; Cao, S. Y. Bull. Korean Chem. Soc. 2013, 34, 3425.   DOI
26 Liu, J. Y.; Du, J. F.; Jia, C. S. Eur. Phys. J. Plus 2013, 128, 139.   DOI
27 Frost, A. A.; Musulin, B. J. Am. Chem. Soc. 1954, 76, 2045.   DOI
28 Chen, T.; Lin, S. R.; Jia, C. S. Eur. Phys. J. Plus 2013, 128, 69.   DOI   ScienceOn
29 Jia, C. S.; Chen, T.; He, S. Phys. Lett. A 2013, 377, 682.   DOI   ScienceOn
30 Rosen, N.; Morse, P. M. Phys. Rev. 1932, 42, 210.   DOI
31 Rydberg, R. Z. Phys. 1933, 80, 514.   DOI
32 Klein, O. Z. Phys. 1932, 76, 226.   DOI
33 Sun, H. Bull. Korean Chem. Soc. 2011, 32, 4233.   DOI   ScienceOn
34 Bayrak, O.; Soylu, A.; Boztosun, I. J. Math. Phys. 2010, 51, 112301.   DOI   ScienceOn
35 Zhang, G. D.; Liu, J. Y.; Zhang, L. H.; Zhou, W.; Jia, C. S. Phys. Rev. A 2012, 86, 062510.   DOI
36 Qiang, W. C.; Sun, G. H.; Dong, S. H. Ann. Phys. (Berlin) 2012, 524, 360.   DOI