Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2448

The α-Effect in SNAr Reaction of Y-Substituted-Phenoxy-2,4-Dinitrobenzenes with Amines: Reaction Mechanism and Origin of the α-Effect  

Cho, Hyo-Jin (Department of Chemistry, Duksung Women's University)
Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University)
Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Abstract
Second-order rate constants ($k_N$) have been measured spectrophotometrically for $S_NAr$ reactions of Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1g) with hydrazine and glycylglycine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Hydrazine is 14.6-23.4 times more reactive than glycylglycine. The magnitude of the ${\alpha}$-effect increases linearly as the substituent Y becomes a stronger electron-withdrawing group (EWG). The Br${\o}$nsted-type plots for the reactions with hydrazine and glycylglycine are linear with ${\beta}_{lg}=-0.21$ and -0.14, respectively, which is typical for reactions reported previously to proceed through a stepwise mechanism with expulsion of the leaving group occurring after rate-determining step (RDS). The Hammett plots correlated with ${\sigma}^{\circ}$ constants result in much better linear correlations than ${\sigma}^-$ constants, indicating that expulsion of the leaving group is not advanced in the transition state (TS). The reaction of 1a-1g with hydrazine has been proposed to proceed through a five-membered cyclic intermediate ($T_{III}$), which is structurally not possible for the reaction with glycylglycine. Stabilization of the intermediate $T_{III}$ through intramolecular H-bonding interaction has been suggested as an origin of the ${\alpha}$-effect exhibited by hydrazine.
Keywords
The ${\alpha}$-effect; $S_NAr$ reaction; Hydrazine; 1-Aryloxy-2,4-dinitrobenzenes; Hammett plot;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 (c) Garver, J. M.; Yang, Z.; Nichols, C. M.; Worker, B. B.; Gronert, S.; Bierbaum, V. M. Int. J. Mass Spectrom. 2012, 316-318, 244-250.   DOI   ScienceOn
2 (d) Garver, J. M.; Gronert, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2011, 133, 13894-13897.   DOI   ScienceOn
3 (e) Villano, S. M.; Eyet, N.; Lineberger, W. C.; Bierbaum, V. M. J. Am. Chem. Soc. 2009, 131, 8227-8233.   DOI   ScienceOn
4 (a) Ren, Y.; Wei, X. G.; Ren, S. J.; Lau, K. C.; Wong, N. B.; Li, W. K. J. Comput. Chem. 2013, 34, 1997-2005.   DOI   ScienceOn
5 (c) Ren, Y.; Yamataka, H. J. Comput. Chem. 2009, 30, 358-365.   DOI   ScienceOn
6 (d) Ren, Y.; Yamataka, H. J. Org. Chem. 2007, 72, 5660-5667.   DOI   ScienceOn
7 (e) Ren, Y.; Yamataka, H. Chem. Eur. J. 2007, 13, 677-682.   DOI   ScienceOn
8 (a) McAnoy, A. M.; Paine, M. R.; Blanksby, S. J. Org. Biomol. Chem. 2008, 6, 2316-2326.   DOI   ScienceOn
9 (b) Patterson, E. V.; Fountain, K. R. J. Org. Chem. 2006, 71, 8121-8125.   DOI   ScienceOn
10 (a) Um, I. H.; Kang, J. S.; Kim, M. Y.; Buncel, E. J. Org. Chem. 2013, 78, 8689-8695.   DOI   ScienceOn
11 (b) Um, I. H.; Im, L. R.; Buncel, E. J. Org. Chem. 2010, 75, 8571-8577.   DOI   ScienceOn
12 (c) Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur. J. 2009, 15, 1011-1017.   DOI   ScienceOn
13 (d) Um, I. H.; Shin, Y. H.; Han, J. Y.; Buncel, E. Can. J. Chem. 2006, 84, 1550-1556.   DOI   ScienceOn
14 (e) Um, I. H.; Buncel, E. J. Am. Chem. Soc. 2001, 123, 11111-11112.   DOI   ScienceOn
15 (a) Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915-920.   DOI   ScienceOn
16 (a) Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley Press: West Sussex, 2009, Chapter 17.
17 (b) Buncel, E.; Um, I. H. Tetrahedron 2004, 60, 7801-7825.   DOI   ScienceOn
18 (c) Hoz, S.; Buncel, E. Israel J. Chem. 1985, 26, 313-319.   DOI
19 (d) Grekov, A. P.; Beselov, V. Ya. Russ. Chem. Rev. 1978, 47, 631-648.   DOI   ScienceOn
20 (b) Buncel, E.; Shaik, S. S.; Um, I. H.; Wolfe, S. J. Am. Chem. Soc. 1988, 110, 1275-1279.   DOI
21 (a) Thomsen, D. L.; Reece, J. N.; Nichols, C. M.; Hammerum, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2013, 135, 15508-15514.   DOI   ScienceOn
22 (b) Garver, J. M.; Yang, Z.; Wehres, N.; Nichols, C. M.; Worker, B. B.; Bierbaum, V. M. Int. J. Mass Spectrom. 2012, 330-332, 182-190.   DOI   ScienceOn
23 (d) Jencks, W. P. Chem. Rev. 1985, 85, 511-527.   DOI
24 (a) Um, I. H.; Bae, A. R.; Um, T. I. J. Org. Chem. 2014, 79, 1206-1212.   DOI   ScienceOn
25 (c) Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078.   DOI   ScienceOn
26 (b) Um, I. H.; Bea, A. R. J. Org. Chem. 2012, 77, 5781-5787.   DOI   ScienceOn
27 (d) Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677.   DOI   ScienceOn
28 (e) Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829.   DOI   ScienceOn
29 (g) Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005.   DOI   ScienceOn
30 (f) Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746.   DOI   ScienceOn
31 Ritchie, J. F. J. Am. Chem. Soc. 1983, 105, 7313-7318.   DOI   ScienceOn
32 Um, I. H.; Buncel, E. J. Org. Chem. 2000, 65, 577-582.   DOI   ScienceOn
33 (a) Kim, M. Y.; Kim, T. E.; Lee, J.; Um, I. H. Bull. Korean Chem. Soc. 2014, 35, 2271-2276.   DOI   ScienceOn
34 (b) Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729-737.
35 (c) Moutiers, G.; Le Guevel, E.; Villien, L.; Terrier, F. J. Chem. Soc. Perkin Trans. 2 1997, 7-13.
36 Moutiers, G.; Le Guevel, E.; Cannes, C.; Terrier, F.; Buncel, E. Eur. J. Org. Chem. 2001, 3279-3284.
37 (a) Um, I. H.; Im, L. R.; Kang, J. S.; Bursey, S. S.; Dust, J. M. J. Org. Chem. 2012, 77, 9738-9746.   DOI   ScienceOn
38 (c) Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536.   DOI   ScienceOn
39 (d) Um, I. H.; Lee, E. J.; Buncel, E. J. Org. Chem. 2001, 66, 4859-4864.   DOI   ScienceOn
40 (b) Um, I. H.; Min, S. W.; Dust, J. M. J. Org. Chem. 2007, 72, 8797-8803.   DOI   ScienceOn
41 Cho, H. J.; Um, I. H. Bull. Korean Chem. Soc. 2014, 35, 2371-2374.   DOI   ScienceOn
42 Um, I. H.; Choi, K. E.; Kwon, D. S. Bull. Korean Chem. Soc. 1990, 11, 362-364.
43 (a) Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696.
44 Jencks, W. P.; Regenstein, J. In Handbook of Biochemistry, 2nd ed.; Sober, H. A., Ed.; Chemical Rubber Publishing Co.: Cleveland, OH, 1970; p J-195.
45 (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: California, USA, 2006; Chapt. 10.
46 (c) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed., Harper Collins Publishers: New York, USA, 1987; Chapt. 8.5.
47 (b) Castro, E. A. J. Sulfur Chem. 2007, 28, 401-429.   DOI   ScienceOn
48 (c) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524.   DOI   ScienceOn
49 (c) Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975.   DOI
50 (b) Page, M. I.; Williams, A. Organic & Bio-organic Mechanisms; Longman: Singapore, 1997; Chapt. 7.
51 Edward, J. O.; Pearson, R. G. J. Am. Chem. Soc. 1962, 84, 16-24.   DOI
52 (b) Wei, X. G.; Sun, X. M.; Wu, W. P.; Ren, Y.; Wong, N. B.; Li, W. K. J. Org. Chem. 2010, 75, 4212-4217.   DOI   ScienceOn
53 (a) Harris, M. J.; McManus, S. P. Ed., Nucleophilicity, Adv. Chem. Ser.; American Chemical Society: Washington D. C. 1986.
54 (b) Um, I. H.; Lee, J. Y.; Bae, S. Y.; Buncel, E. Can. J. Chem. 2005, 83, 1365-1371.   DOI   ScienceOn