Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.4.1169

Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution  

Park, Sanghyun (Department of Chemistry, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Song, Byungkwan (Department of Chemistry, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Kong, Hoon Young (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Byun, Jonghoe (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Hwang, Cheong-Soo (Department of Chemistry, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Publication Information
Abstract
In this study, water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface with conventional and simple structured amino acid ligands: $\small{L}$-Glycine and $\small{L}$-Alanine. The ZnS:Mn-Gly and ZnS:Mn-Ala nanocrystal powders were characterized by XRD, HR-TEM, EDXS, ICP-AES, and FT-IR spectroscopy. The optical properties were measured by UV-Visible and photoluminescence (PL) spectroscopy. The PL spectra for the ZnS:Mn-Gly and ZnS:Mn-Ala showed broad emission peaks at 599 nm and 607 nm with PL efficiencies of 6.5% and 7.8%, respectively. The measured average particle size from the HR-TEM images were $6.4{\pm}0.8$ nm (ZnS:Mn-Gly) and $4.1{\pm}0.5$ nm (ZnS:Mn-Ala), which were also supported by Debye-Scherrer calculations. In addition, the degree of aggregation of the nanocrystals in aqueous solutions were measured by a hydrodynamic light scattering method, which showed formation of sub-micrometer size aggregates for both ZnS:Mn-Gly ($273{\pm}94$ nm) and ZnS:Mn-Ala ($233{\pm}34$ nm) in water due to the intermolecular attraction between the capping amino acids molecules. Finally, the cytotoxic effects of ZnS:Mn-Gly and ZnS:Mn-Ala nanocrsystals over the growth of wild type E. coli were investigated. As a result, no toxicity was shown for the ZnS:Mn-Gly nanocrystal in the colloidal concentration region from 1 ${\mu}g/mL$ to 1000 ${\mu}g/mL$, while ZnS:Mn-Ala showed significant toxicity at 100 ${\mu}g/mL$.
Keywords
ZnS:Mn nanocrystal; Glycine capping; Alanine capping; Cytotoxicity; Aggregation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (b) Hardman, R. Environ. Health Perspect. 2006, 114, 165.   DOI   ScienceOn
2 Marsh, R. E.; Simpson, H. J. Acta Crysatllogr. 1966, 20, 550.   DOI
3 Schiemenz, G. P. Z. Naturforsch 2007, 62b, 235.
4 Korala, L.; Stephanie, L. B. J. Phys. Chem. C 2012, 116, 17110.   DOI   ScienceOn
5 Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. Adv. Mater. 2013, 25, 4986.   DOI   ScienceOn
6 (b) Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Annu. Rev. Anal. Chem. 2013, 6, 143.   DOI   ScienceOn
7 Vaksman, Y. F.; Nitsuk, Y. A.; Yatsun, V. V.; Purtov, Y. N.; Nasibov, A. S.; Shapkin, P. V. Funct. Mater. 2010, 17, 75.
8 Choi, C. L.; Alivisatos, A. P. Annu. Rev. Phys. Chem. 2010, 61, 369.   DOI   ScienceOn
9 Panthani, M. G.; Korgel, B. A. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 287.   DOI   ScienceOn
10 (a) Cieplak, M. J. Phys.: Condens. Matter 2013, 25, 190301.   DOI   ScienceOn
11 Yu, S. H.; Wu, Y. S.; Yang, J.; Han, Z.; Xie, Y.; Qian, Y.; Liu, X. Chem. Mater. 1998, 10, 2309.   DOI   ScienceOn
12 Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Phys. Chem. B 2001, 105, 8861.   DOI   ScienceOn
13 Zhang, Z. H.; Chin, W. S.; Vittal, J. J. J. Phys. Chem. B 2004, 108, 18569.   DOI   ScienceOn
14 Jun, Y. W.; Jang, J. T.; Cheon, J. Bull. Korean Chem. Soc. 2006, 27, 961.   DOI
15 Kho, R.; Nguyen, L.; Torres-Martinez, C. L.; Mehra, R. K. Biochem. Biophys. Res. Commun. 2000, 272, 29.   DOI   ScienceOn
16 Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122.   DOI   ScienceOn
17 Hwang, C. S.; Lee, N. R.; Kim, Y. A. and Park, Y. B. Bull. Korean Chem. Soc. 2006, 27, 1809.   DOI
18 Lippens, P. E.; Lannoo, M. Phys. Rev. B 1989, 39, 10935.   DOI   ScienceOn
19 Williams, A. T.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.   DOI
20 Melhuish, W. H. J. Phys. Chem. 1961, 65, 229.   DOI
21 Goswami, B.; Pal, S.; Sarkar, P. J. Phys. Chem. C 2008, 112, 11630.   DOI   ScienceOn
22 Hasse, M. A.; Qui, J.; DePuydt, J. M.; Cheng, H. Appl. Phys. Lett. 1991, 59, 1272.   DOI
23 Chen, W.; Su, F.; Li, G.; Joly, A. G.; Malm, J.-O.; Bovin, J.-O. J. Appl. Phys. 2002, 92, 1950.   DOI   ScienceOn
24 Dong, B.; Cao, L.; Su, G.; Liu, W.; Zhai, H. J. Alloys and Comp. 2010, 429, 363.
25 International Union of Crystallography in International Tables for X-ray Crystallography, Part III; Netherlands, Dordrecht, 1985; p 318.
26 Kushida, T.; Tanak, Y.; Oka, Y. Sol. Stat. Commun. 1974, 14, 617.   DOI   ScienceOn
27 Fischer, G.; Cao, X.; Cox, N.; Francis, M. Chem. Phys. 2005, 313, 39.   DOI   ScienceOn
28 Kumar, S.; Rai, A. K.; Rai, S. B.; Rai, D. K.; Singh, A. N.; Singh, V. B. J. Mol. Struct. 2006, 791, 23.   DOI   ScienceOn
29 Schneider, J.; Kirby, R. D. Phys. Rev. B 1972, 6, 1290.   DOI
30 Begot, C.; Desnier, I.; Daudin, D. J.; Labadie, J. C.; Lebert, A. J. Microbiol. Meth. 1996, 25, 225.   DOI   ScienceOn
31 Zabic, M.; Kukric, Z.; Topalic-Trivunovic, L. Chem. Ind. & Chem. Eng. Quart. 2009, 15, 251.   DOI
32 Hagmeyer, D.; Ruesing, J.; Fenske, T.; Klein, H. W.; Schmuck, C.; Schrader, W.; Piedade, M. E.; Epple, M. RCS Adv. 2012, 2, 4690.
33 Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.   DOI   ScienceOn
34 (a) Huang, Y. W.; Wu, C. H.; Aronstam, R. S. Materials 2010, 3, 4842.   DOI
35 Moszczenski, C. W.; Hooper, R. J. Inorg. Chim. Acta 1983, 70, 71.   DOI   ScienceOn
36 Yi. G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928.   DOI   ScienceOn
37 Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C. S. Curr. Appl. Phys. 2005, 5, 31.   DOI   ScienceOn
38 Lee, J. H.; Kim, Y. A.; Kim, K.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C. S. Bull. Korean Chem. Soc. 2007, 28, 1091.   DOI
39 Dumane, N. R.; Hussaini, S. G.; Dongre, V. G.; Ghugare, P.; Shirsat, M. D. Appl. Phys. A 2009, 95, 727.   DOI   ScienceOn
40 Kim, J. W.; Han, J. J.; Choi, J. G.; Kim, D. K.; Je, K. C.; Park, S. H.; Yun, J. I.; Fanghanel, T. J. Kor. Phys. Soc. 2006, 49, 135.