Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.933

SWATH-based Comparative Proteomic Analysis of the Mycobacterium bovis BCG-Korea Strain  

Lee, Won-Kyu (Department of Chemistry, College of Natural Sciences, Kookmin University)
Baek, Je-Hyun (Center of Biomedical Mass Spectrometry (CBMS), Diatech Korea Co., Ltd.)
Ryoo, Sung Weon (Department of Research and Development, Korean Institute of Tuberculosis)
Yu, Yeon Gyu (Department of Chemistry, College of Natural Sciences, Kookmin University)
Publication Information
Abstract
A derivative of Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been used for the preparation of tuberculosis vaccines. To establish a Korean tuberculosis vaccine derived from BCG-Pasteur $1173P_2$, genome sequencing of a BCG-Korea strain was completed by Joung and coworkers. A comparison analysis of the genome sequences of the BCG-Pasteur $1173P_2$ and BCG-Korea strains showed marginal increases in the total genome length (~0.05%) and the number of genes (~4%) in the BCG-Korea genome. However, how the genomic changes affect the BCG-Korea protein expression levels remains unknown. Here, we provide evidence of the proteomic alterations in the BCG-Korea strain by using a SWATH-based mass spectrometric approach (Sequential Window Acquisition of all THeoretical mass spectra). Twenty BCG proteins were selected by top-rank identification in the BCG proteome analysis and the proteins were quantified by the SWATH method. Thirteen of 20 proteins showing significant changes were enough to discriminate between the two BCG proteomes. The SWATH method is very straightforward and provides a promising approach owing to its strong reliability and reproducibility during the proteomic analysis.
Keywords
Mycobacterium bovis; BCG-Korea; SWATH; Proteomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 World Health Organization 2013, Global tuberculosis report 2013, (WHO/HTM/TB/2013.11)
2 Calmette, A.; Guerin, C.; Weill-Halle, B. Rev. Tuberc. 1924, 5, 481-491.
3 Oettinger, T.; Jorgensen, M.; Ladefoged, A.; Haslov, K.; Andersen, P. Tuber. Lung Dis. 1999, 79, 243-250.   DOI
4 Liu, J.; Tran, V.; Leung, A. S.; Alexander, D. C.; Zhu, B. Hum. Vaccin. 2009, 5, 70-78.   DOI
5 World Health Assembly, 27th, 1974; Assignment Child. 1985, 69-72; 87-88.
6 Jungblut, P. R.; Schaible, U. E.; Mollenkopf, H. J.; Zimny-Arndt, U.; Raupach, B.; Mattow, J.; Halada, P.; Lamer, S.; Kaufmann, S. H. E. Mol. Microbiol. 1999, 33, 1103-1117.
7 Rodriguez-Alvarez, M.; Mendoza-Hernandez, G.; Encarnacion, S.; Calva, J. J.; Lopez-Vidal, Y. Tuberculosis 2009, 89, 126-135.   DOI
8 Mattow, J.; Schaible, U. E.; Schmidt, F.; Hagens, K.; Siejak, F.; Brestrich, G.; Haeselbarth, G.; Muller, E. C.; Jungblut, P. R.; Kaufmann, S. H. E. Electrophoresis 2003, 24, 3405-3420.   DOI
9 Gillet, L. C.; Navarro, P.; Tate, S.; Rost, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Mol. Cell Proteomics 2012, 11, 1-17.   DOI
10 Berredo-Pinho, M.; Kalume, D. E.; Correa, P. R.; Gomes, L. H. F.; Pereira, M. P.; da Silva, R. F.; Castello-Branco, L. R. R.; Degrave, W. M.; Mendonca-Lima, L. BMC Microbiology 2011, 11, 80.   DOI
11 Orduna, P.; Cevallos, M. A.; de Leon, S. P.; Arvizu, A.; Hernandez-Gonzalez, I. L.; Mendoza-Hernandez, G.; Lopez-Vidal1, Y. BMC Genomics 2011, 12, 493.   DOI
12 Hou, J. M.; D'Lima, N. G.; Rigel, N. W.; Gibbons, H. S.; McCann, J. R.; Braunstein, M.; Teschke, C. M. J. Bacteriol. 2008, 190, 4880-4887.   DOI
13 Joung, S. M.; Ryoo, S. W. Clin. Exp. Vaccine Res. 2013, 2, 83-91.   DOI   ScienceOn
14 Joung, S. M.; Jeon, S. J.; Lim, Y. J.; Lim, J. S.; Choi, B. S.; Choi, I. Y.; Yu, J. H.; Na, K. I.; Cho, E. H.; Shin, S. S.; Pakr, Y. K.; Kim, C. K.; Kim, H. J.; Ryoo, S. W. Genome Anounc. 2013, 1, 1-2.