Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.899

Analysis of Nonclassical Fullerene C24 Regioisomers Encapsulating H2O using Hybrid Density Functional Methods B3LYP and M06-2X  

Lee, Seol (Department of Bio Nano Chemistry, Nanoscales Sciences and Technology Institute, Wonkwang University)
Lee, Ji Young (Department of Bio Nano Chemistry, Nanoscales Sciences and Technology Institute, Wonkwang University)
Lee, Kee Hag (Department of Bio Nano Chemistry, Nanoscales Sciences and Technology Institute, Wonkwang University)
Publication Information
Abstract
The atomic structures and electronic properties of six classical and nonclassical $H_2O$@$C_{24}$ fullerene regioisomers are systematically studied using the hybrid density functional B3LYP method and M06-2X method with empirical dispersion in conjunction with the 6-31G(d,p) basis sets. The charge transfer, frontier orbitals, dipole moment, energy gap between the HOMO and LUMO, and volume change of the $C_{24}$ cage are analyzed upon encapsulation of a $H_2O$ molecule in each $C_{24}$ regioisomer. All encapsulation processes are endothermic and the relative stabilities of six $C_{24}$ fullerene regioisomers change upon encapsulation of $H_2O$.
Keywords
Classical and Nonclassical $H_2O$@$C_{24}$ fullerenes; Regioisomers; B3LYP; M062X; Charge transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Qian, W. Y.; Bartberger, M. D.; Pastor, S. J.; Houk, K. N.; Wilkins, C. L.; Rubin, Y. J. Am. Chem. Soc. 2000, 122, 8333.   DOI
2 Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.   DOI
3 Fowler, P. W.; Heine, T.; Manolopoulos, D. E.; Mitchell, D.; Orlandi, G.; Schmidt, R.; Seifert, G.; Zerbetto, F. J. Phys. Chem. 1996, 100, 6984.   DOI
4 Prinzbach, H.; Weiler, A.; Landenberer, P.; Wahl, F.; Worth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; von Issendorff, B. Nature 2000, 407, 60.   DOI   ScienceOn
5 Martin, J. M. L.; El-Yazal, J.; Francois, J.-P. Chem. Phys. Lett. 1996, 255, 7.   DOI
6 Malolepsza, E.; Witek, H.; Irle, S. J. Phys. Chem. A 2007, 111, 6649.   DOI
7 Wang, Z.; Zhang, J.; Cao, Z. J. Mol. Struc. (Theochem) 2010, 949, 88.   DOI
8 An, W.; Shao, N.; Bulusu, S.; Zeng, X. C. J. Chem. Phys. 2008, 128, 084301.   DOI
9 Brown, S.; Cao, J.; Musfeldt, J. L.; Dragoe, N.; Cimpoesu, F.; Ito, S.; Takagi, H.; Cross, R. J. Phys. Rev. B 2006, 73, 125446.   DOI
10 Li, X. J. Mol. Struc. (Theochem) 2009, 896, 25.   DOI
11 Margadonna, S.; Prassides, K. J. Solid State Chem. 2002, 168, 639.   DOI
12 Cioslowski, J.; Nanayakkara, A. Phys. Rev. Lett. 1992, 69, 2871.   DOI
13 Tutt, L. W.; Krost, A. Nature 1992, 356, 225.   DOI   ScienceOn
14 Yun, Y.; Li, X.-J. Int. J. Quantum. Chem. 2011, 111, 96.   DOI
15 Wu, J.; Sun, Z.; Li, X.; Chen, L.; Tian, M. Struc. Chem. 2010, 21, 673.   DOI
16 Zhang, Y.; Peng, S.; Li, X. J.; Zhang, D. X. J. Mol. Struc. (Theochem) 2010, 947, 16.   DOI
17 Beck, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
18 (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. A 1988, 37, 785.
19 Zhao, Y.; Truhlar, D. G. Theo. Chem. Acc. 2008, 120, 215.   DOI
20 Stephen, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.   DOI   ScienceOn
21 Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.   DOI
22 Frisch, M. J. et al. Gaussian 03 B.04 and 09 A.01, Gaussian, Inc., Pittsburgh, PA.
23 Clark, T. R.; Koch, R. The Chemist's Electronic Book of Orbitals; Springer-Verlag: Berlin, 1999.
24 Raghavachari, K.; Zhang, B.; Pople, J. A.; Johnson, B. G.; Gill, P. M. W. Chem. Phys. Lett. 1994, 220, 385.   DOI