Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.793

A Method for Absolute Determination of the Surface Areal Density of Functional Groups in Organic Thin Films  

Min, Hyegeun (Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science (KRISS))
Son, Jin Gyeong (Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science (KRISS))
Kim, Jeong Won (Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science (KRISS))
Yu, Hyunung (Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science (KRISS))
Lee, Tae Geol (Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science (KRISS))
Moon, Dae Won (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Abstract
To develop a methodology for absolute determination of the surface areal density of functional groups on organic and bio thin films, medium energy ion scattering (MEIS) spectroscopy was utilized to provide references for calibration of X-ray photoelectron spectroscopy (XPS) or Fourier transformation-infrared (FT-IR) intensities. By using the MEIS, XPS, and FT-IR techniques, we were able to analyze the organic thin film of a Ru dye compound ($C_{58}H_{86}O_8N_8S_2Ru$), which consists of one Ru atom and various stoichiometric functional groups. From the MEIS analysis, the absolute surface areal density of Ru atoms (or Ru dye molecules) was determined. The surface areal densities of stoichiometric functional groups in the Ru dye compound were used as references for the calibration of XPS and FT-IR intensities for each functional group. The complementary use of MEIS, XPS, and FT-IR to determine the absolute surface areal density of functional groups on organic and bio thin films will be useful for more reliable development of applications based on organic thin films in areas such as flexible displays, solar cells, organic sensors, biomaterials, and biochips.
Keywords
Organic thin films; Functional group quantification; MEIS; XPS; FT-IR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, T. G.; Kim, J.; Shon, H. K.; Jung, D.; Moon, D. W. Appl. Surf. Sci. 2006, 252, 6632.   DOI   ScienceOn
2 Moon, J. H.; Shin, J. W.; Kim, S. Y.; Park, J. W. Langmuir 1996, 12, 4621.   DOI
3 Awaja, F. J. of Phys.; Conf. Ser. 2008, 100, 012026.   DOI
4 Cran, M. J.; Bigger, S. W. Appl. Spectrosc. 2003, 57, 928.   DOI
5 Van der Veen, J. F. Surf. Sci. Rep. 1985, 5, 199.   DOI   ScienceOn
6 Gebeyehu, D.; Brabee, C. J.; Sariciftci, N. S. J. Am. Chem. Soc. 2002, 115, 6382.
7 Gratzel, M. Photochem. Photobiol. A: Chem. 2004, 164, 3.   DOI   ScienceOn
8 Min, H.; Park, J. W.; Shon, H. K.; Moon, D. W.; Lee, T. G. Appl. Surf. Sci. 2008, 13, 1325.
9 Kido, Y.; Kawamoto, J. J. Appl. Phys. 1987, 61, 956.   DOI
10 Chang, H. S.; Yang, H. D.; Hwang, H.; Cho, H. M.; Lee, H. J.; Moon, D. W. J. Vac. Sci. Technol. B 2002, 20, 1836.   DOI
11 Kido, Y.; Kakeno, M.; Yamada, K.; Kawamoto, J.; Ohsawa, H.; Kawakami, T. J. Appl. Phys. 1985, 58, 3044.   DOI
12 Kido, Y.; Koshikawa, T. J. Appl. Phys. 1990, 67, 187.   DOI
13 Bailey, P.; Noakes, T. C. Q.; Baddeley, C. J.; van der Laan, G.; Brown, D.; Quinn, P. D.; Woodruff, D. P. Current Appl. Phys. 2003, 3, 89.   DOI
14 Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.   DOI   ScienceOn
15 Harris J. Phys. Rev. B 1985, 31, 1770.   DOI
16 Citrin, P. H.; Ginsbeg, A. P. J. Am. Chem. Soc. 1981, 103, 3673.   DOI
17 Rensmo, H.; Westermark, K.; Sodergren, S.; Kohle, O.; Persson, P.; Lunell, S.; Siegbahn, H. J. Chem. Phys. 1999,111, 274.
18 Tanuma, S.; Powell, C. J.; Penn, D. R. Sur. Inter. Anal. 1994, 21, 165.   DOI
19 Raimondi, A. C.; Evans, D. J.; Nunes, F. S. Spectrochimica Acta Part A 2008, 70, 651.   DOI
20 Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Chichester, John Wiley and Sons: 1992.
21 Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Eden Prairie, Minnesota: Perkin-Elmer Co., Physical Electronics Div., 1992.
22 Seah, M. P. Surf. Interface Anal. 1986, 9, 85.   DOI
23 David, B.; Jhon, T. G. Surface Analysis by Auger and X-ray Photoelectorn Spectroscopy; Surface Spectra: Manchester, 2003.
24 Seah, M. P.; Spencer, S. J.; Bensebaa, F.; Vickridge, I.; Danzebrink, H.; Krumrey, M.; Gross, T.; Oesterle, W.; Wendler. E.; Rheinlander, B.; Azuma, Y.; Kojima, I.; Suzuki, N.; Suzuki. M.; Tanuma, S.; Moon, D. W.; Lee, H. J.; Cho, H. M.; Chen, H. Y.; Wee, A. T. S.; Osipowicz, T.; Pan, J. S.; Jordaan, W. A.; Hauert, R.; Klotz, U.; van der Marel, C.; Verheijen, M.; Tamminga, Y.; Jeynes, C.; Bailey.; Biswas, S.; Falke, U.; Nguyen, N. V.; Chandler-Horowitz, D.; Ehrstein, J. R.; Muller, D.; Dura, J. A. Surf. Inter. Anal. 2004, 36, 1269.   DOI
25 Kim, J.; Shon, H. K.; Jung, D.; Moon, D. W.; Han, S. Y.; Lee, T. G. Anal. Chem. 2005, 77, 4137.   DOI   ScienceOn
26 Lee, J. C.; Chung, C. S.; Kang, H. J.; Kim, Y. P.; Kim, H. K.; Moon, D. W. J. Vac. Sci. Technol. A 1995, 13, 1325.