Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.2.546

MPV-Reduction of C=O bond with Al-substituted-dialkylalan; A Theoretical Study on Relative Reactivity of Various Carbonyl Substrates  

Nahm, Keepyung (Department of Chemistry, Yeungnam University)
Publication Information
Abstract
Relative reactivity of various carbonyl and acid derivatives in MPV-type (Meerwein-Ponndorf-Verley) reduction with an DIBAL(F) model has been studied via DFT and MP2 methods. Free energies of initial adduct formation (-Gadd) of DIBAL(F) model and carbonyls are in the order of amide < ester < aldehyde < ketone < acid chloride; in the alan-amide adduct, the developed positive charge at carbonyl carbon is expected to be stabilized by amide resonance, but in the acid chloride adduct it is destabilized by inductive effect of chloride. However the TS barrier energies (${\Delta}G_{TS}$) for the MPV-type hydride reduction of the carbonyl adducts are in the order of aldehyde < ketone < acid chloride << ester < amide; presumably decreasing order of electrophilicity of carbonyl carbon at adducts, which is well correlated with experimental data. It is noted that the relative reactivity of carbonyl derivatives in MPV-type reduction with DIBAL(X) is not governed by the alan-adduct formation energies, but follows the order of electrophilicity of carbonyl carbon of transition states.
Keywords
Al-substituted-dialkylalan; MPV reduction; Carbonyl reduction; DFT; TS barrier;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 (c) Miller, A. E. G.; Bliss, J. W.; Schwatzman, L. H. J. Org. Chem. 1959, 24, 627.   DOI
2 (d) Ziegler, K.; Schneider, K.; Schneider, J. Justus Liebig's Ann. Chem. 1959, 623, 9.   DOI
3 (e) Ziegler, K.; Martin, H.; Krupp, F. Justus Liebig's Ann. Chem. 1960, 629,
4 (f) Carey, F. A.; Sundberg, R. J. In Advanced Organic Chemistry: Part B, 5th ed.; Plenum: 2007; p 396.
5 (a) Cha, J. S. Bull. Korean Chem. Soc. 2007, 28, 2162.   DOI   ScienceOn
6 (b) Cha, J. S.; Kwon, O. O.; Kwon, S. Y.; Kim, J. M.; Seo, W. W.; Chang, S. W. Synlett 1995, 1055.
7 (c) Cha, J. S.; Kwon, O. O.; Kim, J. M.; Chun, J. H.; Lee, Y. S.; Lee, H. S.; Cho, S. D. Bull. Korean Chem. Soc. 1997, 19, 236.
8 (a) Wiberg, K. B. Acc. Chem. Res. 1999, 32, 922.   DOI   ScienceOn
9 (b) Wiberg, K. B.; Marquez, M.; Castejon, H. J. Org. Chem. 1994, 59, 6817.   DOI
10 (c) Carey, F. A.; Sundberg, R. J. In Advanced Organic Chemistry: Part B, 5th ed.; Plenum: 2007; p 319.
11 Kow, R.; Nygren, R.; Rathke, M. W. J. Org. Chem. 1977, 42, 826.   DOI
12 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2010.
13 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
14 (a) Nguyen, S. T. Tetrahedron: Asymmetry 2005, 16, 3460. 3.   DOI   ScienceOn
15 (b) Cha, J. S. Org. Process Res. Dev. 2006, 10, 1032.   DOI   ScienceOn
16 Meerwein, H.; Schmidt, R. Liebigs Ann. Chem. 1925, 444, 221.   DOI
17 Ponndorf, W. Z. Angew. Chem. 1926, 39, 138.   DOI
18 Verley, M. Bull. Soc. Chim. Fr. 1925, 37, 871-874.
19 Nahm, K.; Cha, J. S. Bull. Korean Chem. Soc. 2013, 34, 2335.   DOI   ScienceOn
20 (a) Ziegler, K. Angew. Chem. 1964, 76, 545.   DOI
21 (b) Winterfeldt, E. Synthesis 1975, 617.
22 Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.   DOI   ScienceOn
23 Becke, A. D. J. Chem. Phys. 1993, 98, 1372.   DOI
24 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
25 Bauschlicher, C. W., Jr.; Partridge, H. J. Chem. Phys. 1995, 103, 1788.   DOI   ScienceOn
26 Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.   DOI
27 Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.   DOI   ScienceOn
28 Head-Gordon, M.; Head-Gordon, T. Chem. Phys. Lett. 1994, 220, 122.   DOI   ScienceOn
29 Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.   DOI   ScienceOn