Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.1.62

Molecular Modeling and Docking Studies of 3'-Hydroxy-N-methylcoclaurine 4'-O-Methyltransferase from Coptis chinensis  

Zhu, Qiankun (School of Life Science and Engineering, Southwest Jiaotong University)
Zhu, Mengli (School of Life Science and Engineering, Southwest Jiaotong University)
Fan, Gaotao (School of Life Science and Engineering, Southwest Jiaotong University)
Zou, Jiaxin (School of Life Science and Engineering, Southwest Jiaotong University)
Feng, Peichun (School of Life Science and Engineering, Southwest Jiaotong University)
Liu, Zubi (School of Life Science and Engineering, Southwest Jiaotong University)
Wang, Wanjun (School of Life Science and Engineering, Southwest Jiaotong University)
Publication Information
Abstract
Coptis chinensis 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (HOMT), an essential enzyme in the berberine biosynthetic pathway, catalyzes the methylation of 3'-hydroxy-N-methylcoclaurine (HMC) producing reticuline. A 3D model of HOMT was constructed by homology modeling and further subjected to docking with its ligands and molecular dynamics simulations. The 3D structure of HOMT revealed unique structural features which permitted the methylation of HMC. The methylation of HMC was proposed to proceed by deprotonation of the 4'-hydroxyl group via His257 and Asp258 of HOMT, followed by a nucleophilic attack on the SAM-methyl group resulting in reticuline. HOMT showed high substrate specificity for methylation of HMC. The study evidenced that Gly117, Thr312 and Asp258 in HOMT might be the key residues for orienting substrate for specific catalysis.
Keywords
3'-Hydroxy-N-methylcoclaurine 4'-O-methyltransferase; Molecular modeling; Molecular docking; Coptis chinensis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 2, 187.
2 Arfken, G.; Romain, J. Phys. Today 1967, 20, 79.
3 Fletcher, R.; Reeves, C. M. Comput. J. 1964, 2, 149.
4 Van Gunsteren, W.; Berendsen, H. Mol. Phys. 1977, 5, 1311.
5 Cheatham, T. I.; Miller, J.; Fox, T.; Darden, T.; Kollman, P. J. Am. Chem. Soc. 1995, 14, 4193.
6 Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 2, 283.
7 Sippl, M. J. Proteins 1993, 4, 355.
8 Eisenberg, D.; Luthy, R.; Bowie, J. U. Meth. Enzymol. 1997, 396.
9 Salzano, M.; Marabotti, A.; Milanesi, L.; Facchiano, A. Biochem. Bioph. Res. Co. 2011, 2, 176.
10 Wu, G.; Robertson, D. H.; Brooks, C. L.; Vieth, M. J. Comput. Chem. 2003, 13, 1549.
11 Zubieta, C.; He, X.-Z.; Dixon, R. A.; Noel, J. P. Nat. Struct. Mol. Bio. 2001, 3, 271.
12 Liu, C.-J.; Deavours, B. E.; Richard, S. B.; Ferrer, J.-L.; Blount, J. W.; Huhman, D.; Dixon, R. A.; Noel, J. P. Plant Cell 2006, 12, 3656.
13 Zubieta, C.; Kota, P.; Ferrer, J.-L.; Dixon, R. A.; Noel, J. P. Plant Cell 2002, 6, 1265.
14 Gajendrarao, P.; Krishnamoorthy, N.; Sakkiah, S.; Lazar, P.; Lee, K. W. J. Mol. Graphics Model 2010, 6, 524.
15 Shan, S.; Xia, L.; Ding, X.; Zhang, Y.; Hu, S.; Sun, Y.; Yu, Z.; Han, L. Chin. J. Chem. 2011, 3, 427.
16 Bodade, R. G.; Beedkar, S. D.; Manwar, A. V.; Khobragade, C. N. Int. J. Biol. Macromol. 2010, 2, 298.
17 Ibrahim, R. K.; Bruneau, A.; Bantignies, B. Plant Mol. Biol. 1998, 1, 1.
18 Joshi, C. P.; Chiang, V. L. Plant Mol. Biol. 1998, 4, 663.
19 Yang, H.; Ahn, J. H.; Ibrahim, R. K.; Lee, S.; Lim, Y. J. Mol. Graphics Model 2004, 1, 77.
20 Ferrer, J. L.; Austin, M. B.; Stewart, C., Jr.; Noel, J. P. Plant Physiol. Biochem. 2008, 3, 356.
21 Zhu, Q.-K.; Zhou, J.-Y.; Zhang, G.; Liao, H. Chin. J. Chem. 2012, 10, 2533.
22 Zhou, J. M.; Lee, E.; Kanapathy-Sinnaiaha, F.; Park, Y.; Kornblatt, J. A.; Lim, Y.; Ibrahim, R. K. BMC Plant Biol. 2010, 1471.
23 Klimašauskas, S.; Weinhold, E. Trends Biot. 2007, 3, 99.
24 Li, B.; Zhu, W.; Chen, K. Acta Pharm. Sin. 2008, 8, 773.
25 Sato, F.; Hashimoto, T.; Hachiya, A.; Tamura, K.-I.; Choi, K.-B.; Morishige, T.; Fujimoto, H.; Yamada, Y. Proc. Nati. Acad. Sci. 2001, 1, 367.
26 Frenzel, T.; Zenk, M. H. Phytochemistry 1990, 11, 3505.
27 Martin, J. L.; McMillan, F. M. Curr. Opin. Struct. Biol. 2002, 6, 783.
28 Facchini, P. J. Ann. Rev. Plant Biol. 2001, 1, 29.
29 Frick, S.; Kutchan, T. M. Plant J. 1999, 4, 329.
30 Morishige, T.; Tsujita, T.; Yamada, Y.; Sato, F. J. Biol. Chem. 2000, 30, 23398.
31 Wang, C.; Yu, X.; Liu, C. DOI: http://wwwrcsborg/pdb/explore/exploredo?pdbId=2QYO 2007.
32 Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 1, 235.
33 Ye, J.; McGinnis, S.; Madden, T. L. Nucleic Acids Res. 2006, suppl 2, W6.
34 Johnson, M. S. Mol. Med. Today 1995, 4, 188.
35 Zhou, X.; Zhang, M.; Wang, G.; Yang, X. Chem. J. Chin. U 2010, 25.
36 Elumalai, P.; Liu, H.-L. Int. J. Biol. Macromol. 2011, 2, 134.
37 Zhao, Y.-S.; Zheng, Q.-C.; Zhang, H.-X.; Chu, H.-Y.; Sun, C.-C. Acta Phys-Chim. Sin. 2009, 3, 417.
38 Zeng, J.; Wang, A.; Gong, X.; Chen, J.; Chen, S.; Xue, F. Chin. J. Chem. 2012, 1, 115.
39 Zhou, Y.; Luo, Q.; Han, W.; Yao, Y.; Li, Z. Chem. J. Chin. U. 2009, 37.