Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.12.3618

Expeditious Synthesis of Natural Benzofuran, Eupomatenoid-6 by Umpolung of α-Aminophosphonates  

Damodar, Kongara (Department of Chemistry and Institute of Natural Medicine, Hallym University)
Jun, Jong-Gab (Department of Chemistry and Institute of Natural Medicine, Hallym University)
Publication Information
Abstract
Simple and practical synthesis of natural benzofuran derivative eupomatenoid-6 via Horner-Emmons type condensation as the key step is described. The umpolung property of aldehyde derivative, ${\alpha}$-aminophosphonate was efficiently employed in this reaction. ${\alpha}$-Aminophosphonate of anisaldehyde subjected to Horner-Emmons type condensation with 5-bromo-2-methoxybenzaldehyde to yield the deoxybenzoin, which was further methylated and then underwent tandem demethylation-cyclodehydration to afford the benzofuran scaffold in excellent yield. Finally Suzuki coupling with propenyl boronic acid afforded eupomatenoid-6 with an overall yield of 56.8%.
Keywords
${\alpha}$-Aminophosphonate; Kebachnik-Fields reaction; Horner-Emmons type condensation; Suzuki coupling; Eupomatenoid-6;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 (i) Lingam, V. S.; Vinodkumar, R.; Mukkanti, K.; Thomas, A.; Gopalan, B. Tetrahedron Lett. 2008, 49, 4260-4264.   DOI
2 Eidamshaus, C.; Burch, J. D. Org. Lett. 2008, 10, 4211-4214.   DOI
3 (j) Csekei, M.; Novak, Z.; Kotschy, A. Tetrahedron 2008, 64, 8992-8996.   DOI
4 Duan, X. F.; Zeng, J.; Zhang, Z. B.; Zi, G. F. J. Org. Chem. 2007, 72, 10283-10286.   DOI
5 Miyata, O.; Takeda, N.; Naito, T. Org. Lett. 2004, 6, 1761-1763.   DOI
6 Murphy, S. K.; Bruch, A.; Dong, V. M. Angew. Chem. Int. Ed. 2014, 53, 2455-2499.   DOI
7 Ruan, L.; Shi, M.; Mao, S.; Yu, L.; Yang, F.; Tang, J. Tetrahedron 2014, 70, 1065-1070.   DOI
8 (a) Bowden, B. F.; Ritchie, E.; Taylor, W. C. Austr. J. Chem. 1972, 25, 2659-2669.   DOI
9 (b) Picker, K.; Ritchie, E.; Taylor, W. C. Austr. J. Chem. 1973, 26, 1111-1119.   DOI
10 (c) Read, R. W.; Taylor, W. C. Austr. J. Chem. 1979, 32, 2317-2321.   DOI
11 (e) Carroll, A. R.; Taylor, W. C. Austr. J. Chem. 1991, 44, 627-1633.   DOI
12 (a) Chauret, D. C.; Bernard, C. B.; Arnason, J. T.; Durst, T.; Krishnamurty, H. G.; Sanchez-Vindas, P.; Moreno, N.; San Roman, L.; Poveda, L. J. Nat. Prod. 1996, 59, 152-155.   DOI
13 (b) Tsai, I.-L.; Hsieh, C.-F.; Duh, C.-Y. Phytochemistry 1988, 27, 1371-1374.   DOI
14 (c) Carini, M.; Aldini, G.; Orioli, M.; Facino, R. M. Planta Med. 2002, 68, 193-197.   DOI
15 (d) Freixa, B.; Vila, R.; Ferro, E. A.; Adzet, T.; CaCigueral, S. Planta Med. 2001, 67, 873-875.   DOI
16 (a) McKittrick, B. A.; Stevenson, R. J. Chem. Soc. Perkin Trans. 1 1983, 475-483.
17 (c) Von Angerer, E.; Biberger, C.; Leitchtl, S. Ann. N.Y. Acad. Sci. 1995, 761, 176-191.   DOI
18 (d) Teo, C. C.; Kon, O. L.; Sim, K. Y.; Ng, S. C. J. Med. Chem. 1992, 35, 1330-1339.   DOI
19 Hocke, C.; Prante, O.; Lober, S.; Hubener, H.; Gmeiner, P.; Kuwert, T. Bioorg. Med. Chem. Lett. 2004, 14, 3963-3966.   DOI
20 (a) Ward, R. S. Nat. Prod. Rep. 1997, 14, 43-74.   DOI   ScienceOn
21 (a) Cowart, M.; Pratt, J. K.; Stewart, A. O.; Bennani, Y. L.; Esbenshade, T. A.; Hancock, A. A. Bioorg. Med. Chem. Lett. 2004, 14, 689-693.   DOI
22 Hu, Y.; Xiang, J. S.; Di Grandi, M. J.; Du, X.; Ipek, M.; Laakso, L. M.; Li, J.; Li, W.; Rush, T. S.; Schmid, J.; Skotnicki, J. S.; Tam, S.; Thomason, J. R.; Wang, Q.; Levin, J. I. Bioorg. Med. Chem. 2005, 13, 6629-6644.   DOI
23 (b) Adams, M.; Pacher, T.; Greger, H.; Bauer, R. J. Nat. Prod. 2005, 68, 83-85.   DOI
24 (b) Watanabe, M.; Date, M.; Kawanishi, K.; Hori, T.; Furukawa, S. Chem. Pharm. Bull. 1991, 39, 41-48.   DOI
25 (c) Bach, T.; Bartels, M. Tetrahedron Lett. 2002, 43, 9125-9127.   DOI
26 (a) Kim, S.-J.; Kim, C. G.; Yun, S.-R.; Kim, J.-K.; Jun, J.-G. Bioorg. Med. Chem. Lett. 2014, 24, 181-185.   DOI
27 (b) Lee, N. L.; Lee, J. J.; Kim, J.-K.; Jun, J.-G. Bull. Korean Chem. Soc. 2012, 33, 1907-1912.   DOI
28 (c) Jeon, J.-H.; Kim, M. R.; Jun, J.-G. Synthesis 2011, 370-373.
29 (a) Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141-1143.   DOI   ScienceOn
30 (b) Hazeri, N.; Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Aboonajmi, J.; Lashkari, M.; Sajadikhah, S. S. Res. Chem. Intermed. 2014, 40, 1781-1788.   DOI
31 (a) Journet, M.; Cai, D.; Larsen, R. D.; Reider, P. J. Tetrahedron Lett. 1998, 39, 1717-1720.   DOI
32 Seemuth, P. D.; Zimmer, H. J. Org. Chem. 1978, 43, 3063-3065.   DOI
33 Takeda, N.; Miyata, O.; Naito, T. Eur. J. Org. Chem. 2007, 9, 1491-1509.
34 (a) Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58, 4716-4721.   DOI
35 (b) Bates, C. G.; Saejueng, P.; Murphy, J. M.; Venkataraman, D. Org. Lett. 2002, 4, 4727-4729.   DOI
36 (c) Bernini, R.; Cacchi, S.; Salve, H. D.; Fabrizi, G. Synthesis 2007, 873-882.
37 (d) Fiandanese, V.; Bottalico, D. G.; Marchese, A. P. Tetrahedron 2008, 64, 53-60.   DOI
38 (e) Liu, J.; Chen, W.; Ji, Y.; Wang, L. Adv. Synth. Catal. 2012, 354, 1585-1592.   DOI
39 (f) Leibeling, M.; Pawliczek, M.; Kratzert, D.; Stalke, D.; Werz, D. B. Org. Lett. 2012, 14, 346-349.   DOI
40 (g) Saha, D.; Dey, R.; Ranu, B. C. Eur. J. Org. Chem. 2010, 31, 6067-6071.
41 (h) Zanardi, A.; Mata, J. A.; Peris, E. Organometallics 2009, 28, 4335-4339.   DOI
42 (b) Rohrkasten, R. In Houben-Weyl Methoden der Organischen Chemie; 4. Aufl., Vol. E6b1, Kreher, R. P., Ed.; Thieme: Stuttgart; 1994, pp 33-162.
43 (c) Dell, C. B. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations; Thomas, E. J., Ed.; Thieme: Stuttgart; 2000; Vol. 10, pp 11-86.
44 (a) Kawasaki, K.; Masubuchi, M.; Morikami, K.; Sogabe, S.; Aoyama, T.; Ebiike, H.; Niizuma, S.; Hayase, M.; Fujii, T.; Sakata, K.; Shidoh, H.; Stiratori, Y.; Aoki, Y.; Ohtsuka, T.; Stimma, N. Bioorg. Med. Chem. Lett. 2003, 13, 87-91.   DOI
45 (b) Khan, M. W.; Alam, M. J.; Rashid, M. A.; Chowdhury, R. Bioorg. Med. Chem. 2005, 13, 4796-4805.   DOI   ScienceOn
46 (a) Crenshaw, R. R.; Jeffries, A. T.; Luke, G. M.; Cheney, L. C.; Bialy, G. J. Med. Chem. 1971, 14, 1185-1190.   DOI
47 (b) Halabalaki, M.; Aligiannis, N.; Papoutsi, Z.; Mitakou, S.; Moutsatsou, P.; Sekeris, C.; Skaltsounis, A.-L. J. Nat. Prod. 2000, 63, 1672-1674.   DOI
48 (b) Jin, C. H.; Krishnaiah, M.; Sreenu, D.; Subramanyam, V. B.; Rao, K. S.; Mohan, A. V. N.; Park, C.-Y.; Son, J.-Y.; Sheen, Y. Y.; Kim, D.-K. Bioorg. Med. Chem. Lett. 2011, 21, 6049-6053.   DOI
49 (d) Carroll, A. R.; Taylor, W. C. Austr. J. Chem. 1991, 44, 1615-1626.   DOI
50 (b) Gfesser, G. A.; Faghih, R.; Bennani, Y. L.; Curtis, M. P.; Esbenshade, T. A.; Hancock, A. A.; Cowart, M. D. Bioorg. Med. Chem. Lett. 2005, 15, 2559-2563.   DOI
51 (a) Dean, F. M.; Sargent, M. V.; Donnely, D. M. X.; Meegan, M. J. In Comprehensive Heterocyclic Chemistry; Katrizky, A., Rees, C. W., Bird, C. W., Cheeseman, G. W. H., Eds.; Pergamon: Oxford; 1984; Vol. 4, pp 531-712.