Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.3030

Peptide Micelles for Anti-cancer Drug Delivery in an Intracranial Glioblastoma Animal Model  

Yi, Na (BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Hanyang University)
Lee, Minhyung (BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Hanyang University)
Publication Information
Abstract
Bis-chloroethylnitrosourea (BCNU) is currently used as an anti-cancer drug for glioblastoma therapy. In this study, BCNU was loaded into the hydrophobic cores of R3V6 amphiphilic peptide micelles for efficient delivery into brain tumors. The scanning electron microscope (SEM) study showed that the BCNU-loaded R3V6 peptide micelles (R3V6-BCNU) formed spherical micelles. MTT assay showed that R3V6-BCNU more efficiently induced cell death in C6 glioblastoma cells than did BCNU. In the Annexin V assay, R3V6-BCNU more efficiently induced apoptosis than did BCNU alone. Furthermore, the results showed that R3V6 was not toxic to cells. The positive charges of the R3V6 peptide micelles may facilitate the interaction between R3V6-BCNU and the cellular membrane, resulting in an increase in cellular uptake of BCNU. In vivo evaluation with an intracranial glioblastoma rat model showed that R3V6-BCNU more effectively reduced tumor size than BCNU alone. The results suggest that R3V6 peptide micelles may be an efficient carrier of BCNU for glioblastoma therapy.
Keywords
Glioblastoma; BCNU; Drug delivery; Peptide micelle; Animal model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amberger-Murphy, V. Current Cancer Drug Targets 2009, 9, 381-390.   DOI
2 Karpati, G.; Li, H.; Nalbantoglu, J. Cur. Opin. Mol. Therapeut. 1999, 1, 545-552.
3 Louis, D. N. Ann. Rev. Pathol. 2006, 1, 97-117.   DOI   ScienceOn
4 Haar, C. P.; Hebbar, P.; Wallace, G. C. T.; Das, A.; Vandergrift, W. A., III; Smith, J. A.; Giglio, P.; Patel, S. J.; Ray, S. K.; Banik, N. L. Neurochem. Res. 2012, 37, 1192-1200.   DOI
5 Salvati, M.; D'Elia, A.; Frati, A.; Brogna, C.; Santoro, A.; Delfini, R. J. Neurosurg. Sci. 2011, 55, 1-6.
6 Perry, J.; Chambers, A.; Spithoff, K.; Laperriere, N. Curr. Oncol. 2007, 14, 189-194.   DOI
7 Lee, J.; Hyun, H.; Kim, J.; Ryu, J. H.; Kim, H. A.; Park, J. H.; Lee, M. J. Control. Release 2012, 158, 131-138.   DOI
8 Hyun, H.; Lee, J.; Hwang do, W.; Kim, S.; Hyun, D. K.; Choi, J. S.; Lee, J. K.; Lee, M. Biomaterials 2011, 32, 306-315.   DOI
9 Yi, N.; Oh, B.; Kim, H. A.; Lee, M. J. Drug Target. 2014, 22, 156-164.   DOI
10 Park, J. H.; Kim, H. A.; Cho, S. H.; Lee, M. J. Cell Biochem. 2012, 113, 1645-1653.
11 Sheihet, L.; Dubin, R. A.; Devore, D.; Kohn, J. Biomacromolecules 2005, 6, 2726-2731.   DOI
12 Yi, Y. H.; Guo, W. C.; Sun, W. W.; Su, T.; Lin, H.; Chen, S. Q.; Deng, W. Y.; Zhou, W.; Liao, W. P. Biologics: Targets & Therapy 2008, 2, 339-344.
13 Park, J. H.; Kim, H. A.; Park, J. H.; Lee, M. Biomaterials 2012, 33, 6542-6550.   DOI   ScienceOn
14 Kahlert, U. D.; Maciaczyk, D.; Dai, F.; Claus, R.; Firat, E.; Doostkam, S.; Bogiel, T.; Carro, M. S.; Dobrossy, M.; Herold- Mende, C.; Niedermann, G.; Prinz, M.; Nikkhah, G.; Maciaczyk, J. J. Neuropathol. Exp. Neurol. 2012, 71, 1086-1099.   DOI