Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.2911

Stability and Interconversion of Acetylcholine Conformers  

Lee, Jae Shin (Department of Chemistry, Ajou University)
Park, Young Choon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Abstract
The gas phase structures, energetics, and interconversion pathways of five lowest energy conformers of acetylcholine were examined employing the B3LYP, MP2, and CCSD(T) methods in conjunction with diverse basis sets including the correlation consistent aug-cc-pVDZ and aug-cc-pVTZ basis sets. It is found that use of adequate basis set containing proper polarization and diffuse functions capable of describing the floppy potential energy surface of acetylcholine is important in correctly predicting the relative stability of these conformers. The interconversion pathways and barrier heights between these conformers were elucidated by examining the potential energy surface for torsional motion, which also manifested the presence of chiral conformations of acetylcholine corresponding to the original conformations. On the basis of high level electronic energy calculations and thermal contribution analysis, four lowest energy conformers appear to be populated in the energy range of less than 1 kcal/mol at room temperature.
Keywords
Acetylcholine conformers; Stability; Interconversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cashin, A. L.; Petersson, E. J.; Lester, H. A.; Dougherty, D. A. J. Am. Chem. Soc. 2005, 127, 350.   DOI
2 Taylor, P.; Brown, J. H. Acetylcholine. In Brady, S., Siegel, G., W. Albers, R., Price, D., Eds.; Basic Neurochemistry: Molecular, Cellular and Medical Aspects; Academic Press: London, 2005; pp 185-209.
3 Beverige, D. L.; Radna, R. J. J. Amer. Chem. Soc. 1971, 93, 3759.   DOI
4 Radna, R. J.; Beveridge, D. L.; Bender, A. L. J. Am. Chem. Soc. 1973, 95, 3831.   DOI
5 Beverige, D. L.; Kelly, M. M.; Radna, R. J. J. Am. Chem. Soc. 1974, 96, 3769.   DOI
6 Pullman, A.; Port, G. N. J. Theoret. Chim. Acta 1973, 32, 77.   DOI
7 Segall, M. D.; Payne, M. C.; Boyes, R. N. Mol. Phys. 1998, 93, 365.   DOI
8 Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.   DOI
9 Munoz-Caro, C.; Nino, A.; Mora, M.; Reyes, S.; Melendez, F. J.; Castro, M. E. Journal of Molecular Structure: THEOCHEM 2005, 726, 115.   DOI
10 Seydou, M.; Gregoire, G.; Jean Liquier, Lemaire, J.; Schermann, J. P.; Desfrancois, C. J. Am. Chem. Soc. 2008, 130, 4187.   DOI
11 Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.   DOI
12 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
13 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
14 Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.   DOI
15 Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133.   DOI
16 Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.   DOI
17 Grishanin, B. A.; Zadkov, V. N. J. Exper. Theo. Phys. 1999, 89, 669.   DOI
18 Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.   DOI
19 Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.   DOI
20 Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.   DOI
21 Elango, M.; Maciel, G. S.; Palazzetti, F.; Lombardi, A.; Aquilanti, V. J. Phys. Chem. A 2010, 114, 9864.   DOI
22 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P. Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
23 Yuan, H.; Petukhov, P. A. Bioorg. Med. Chem. 2006, 14, 7936.   DOI
24 Froimowitz, M.; Gans, J. J. Am. Chem. Soc. 1972, 94, 8020.   DOI
25 Stephens, P. J.; Devlin, F.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.   DOI   ScienceOn