Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.2906

Modeling Charge Penetration Effects in Water-Water Interactions  

Choi, Tae Hoon (Department of Chemical Engineering Education, Chungnam National University)
Publication Information
Abstract
This report introduces Gaussian electrostatic models (GEMs) to account for charge penetration effects in water-water interactions, allowing electrostatic interactions to be accurately described. Three different Gaussian electrostatic models, GEM-3S, GEM-5S, and GEM-6S are designed with s-type Gaussian functions. The coefficients and exponents of the Gaussian functions are optimized using the electrostatic potential (ESP) fitting procedure based on that of the MP2/aug-cc-pVTZ method. The electrostatic energies of ten different water dimers that were calculated with GEM-6S agree well with the results of symmetry-adapted perturbation theory (SAPT), indicating that this designed model can be effectively applied to future water models.
Keywords
Gaussian electrostatic models; Charge penetration; Water dimer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ren, P.; Ponder, J. W. J. Phys. Chem. B 2003, 107, 5933.
2 Jorgensen, W. L.; Chandrasekhar, J.; Madure, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.   DOI
3 Dang, L. X.; Chang, T.-M. J. Chem. Phys. 1997, 106, 8149.   DOI   ScienceOn
4 Bumham, C. J.; Li, J. C.; Xantheas, S. S. J. Chem. Phys. 2002, 116, 1500.   DOI
5 DeFusco, A.; Schofield, D.; Jordan, K. D. Mol. Phys. 2007, 105, 2681.   DOI
6 Akin-ojo, O.; Wang, F. J. Comput. Chem. 2011, 32, 453.   DOI
7 Stone, A.; Alderton, M. Mol. Phys. 1985, 56, 1047.   DOI   ScienceOn
8 Kumar, R.; Wang, F.-F.; Jenness, G. R.; Jordan, K. D. J. Chem. Phys. 2010, 132, 014309.   DOI
9 Cisneros, G. A.; im Tholander, S. N.; Parisel, O.; Darden, T. A.; Elking, D.; Perera, L.; Piquemal, J.-P. Int. J. Quantum Chem. 2008, 108, 1905.   DOI
10 Freitag, M. A.; Gordon, M. S.; Jensen, J. H.; Stevens, W. J. J. Chem. Phys. 2000, 112, 7300.   DOI
11 Piquemal, J. P.; Gresh, N.; Giessner-Prettre, C. J. Phys. Chem. A 2005, 107, 10353.
12 Gresh, N.; Piquemal, J. P.; Krauss, M. J. Comput. Chem. 2005, 26, 1113.   DOI
13 Cisneros, G. A.; Piquemal, J.-P.; Darden, T. A. J. Chem. Phys. 2006, 125, 184101.   DOI
14 Cisneros, G. A.; Piquemal, J.-P.; Darden, T. A. J. Chem. Phys. 2005, 123, 044109.   DOI
15 Cisneros, G. A.; Piquemal, J.-P.; Darden, T. A. J. Phys. Chem. B 2006, 110, 13682.   DOI
16 Cisneros, G. A.; Elking, D.; Piquemal, J.-P.; Darden, T. A. J. Phys. Chem. A 2007, 111, 12049.   DOI
17 Lovas, F. J. J. Phys. Chem. Ref. Data 1978, 7, 1445.   DOI
18 Cisneros, G. A. J. Chem. Theory Comput. 2012, 8, 5072.   DOI
19 Mas, E. M.; Bukowski, R.; Szalewicz, K.; Groenenboom, G. C.; Wormer, P. E. S.; van der Avoird, A. J. Chem. Phys. 2000, 113, 6687.   DOI
20 Hu, H.; Lu, Z.; Yang, W. J. Chem. Theo. Comput. 2007, 3, 1004.   DOI
21 Rybak, S.; Jeziorski, B.; Szalewicz, K. J. Chem. Phys. 1991, 95, 6576.   DOI
22 Mas, E. M.; Szalewicz, K.; Bukowski, R.; Jeziorski, B. J. Chem. Phys. 1997, 107, 4207.   DOI
23 Smith, B. J.; Swanton, D. J.; Pople, J. A.; Schaefer, H. F.; Radom, L. J. Chem. Phys. 1990, 92, 1240.   DOI
24 Bagus, P. S.; Illas, F. J. J. Chem. Phys. 1992, 96, 8962.   DOI
25 Piquemal, J.-P.; Marquez, A.; Parisel, O.; Giessner-Prettre, C. J. Comput. Chem. 2005, 26, 1052.   DOI
26 Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. A 2007, 111, 8753.   DOI
27 Diercksen, G. H. F.; Roos, B. O.; Sadlej, A. J. Chem. Phys. 1981, 26, 29.