Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.9.2711

Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol  

Zhang, Ning (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Li, Weizhong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Chen, Cong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Zuo, Jianguo (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Weng, Lindong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Publication Information
Abstract
Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions.
Keywords
Molecular dynamics simulation; Methanol; Ethylene glycol; Glycerol; Hydrogen bond;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jedlovszky, P.; Turi, L. J. Phys. Chem. B 1997, 101(27), 5429-5436.   DOI   ScienceOn
2 Marques, M. P. M.; Amorim da Costa, A. M.; Ribeiro-Claro, P. J. A. J. Phys. Chem. A 2001, 105(21), 5292-5297.   DOI   ScienceOn
3 Zhang, R.; Li, H.; Lei, Y.; Han, S. J. Phys. Chem. B 2005, 109(15), 7482-7487.   DOI   ScienceOn
4 Dougan, L.; Bates, S. P.; Hargreaves, R.; Fox, J. P.; Crain, J.; Finney, J. L.; Reat, V.; Soper, A. K. J. Chem. Phys. 2004, 121(13), 6456-6462.   DOI   ScienceOn
5 Towey, J. J.; Soper, A. K.; Dougan, L. J. Phys. Chem. B 2011, 115(24), 7799-7807.   DOI   ScienceOn
6 Guardia, E.; Marti, J.; Garcia-Tarres, L.; Laria, D. J. Mol. Liq. 2005, 117(1-3), 63-67.   DOI   ScienceOn
7 Washburn, E. W. (Knovel, U.S., 2003).
8 Guardia, E.; Marti, J.; Padro, J. A.; Saiz, L.; Komolkin, A. V. J. Mol. Liq. 2002, 96-97, 3-17.   DOI   ScienceOn
9 Weng, L.; Li, W.; Zuo, J. Cryobiology 2011, 62(3), 210-217.   DOI   ScienceOn
10 Elola, M. D.; Ladanyi, B. M. J. Chem. Phys. 2006, 125, 184506.   DOI   ScienceOn
11 Iulian, O.; Ciocirlan, O. Rev. Roum. Chim. 2010, 55, 45-53.
12 Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26(16), 1781-1802.   DOI   ScienceOn
13 Padro, J. A.; Saiz, L.; Guardia, E. J. Mol. Struct. 1997, 416(1-3), 243-248.   DOI   ScienceOn
14 Chen, C.; Li, W.; Song, Y.; Yang, J. Mol. Phys. 2009, 107(7), 673-684.   DOI   ScienceOn
15 Chen, C.; Li, W.-Z. Acta Phys. -Chim. Sin. 2009, 25(3), 507.
16 Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W. ; Klein, M. L. J. Chem. Phys. 1983, 79(2), 926-935.   DOI
17 MacKerell, A. D.; Bashford, D.; Bellott, Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102(18), 3586-3616.   DOI   ScienceOn
18 Reiling, S.; Schlenkrich, M.; Brickmann, J. J. Comput. Chem. 1996, 17(4), 450-468.   DOI
19 Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys. 1994, 101(5), 4177-4189.   DOI   ScienceOn
20 Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98(12), 10089-10092.   DOI   ScienceOn
21 Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23(3), 327-341.   DOI   ScienceOn
22 Sarkisov, G. N.; Dashevsky, V. G.; Malenkov, G. G. Mol. Phys. 1974, 27(5), 1249-1269.   DOI   ScienceOn
23 Stillinger, F. H.; Rahman, A. J. Chem. Phys. 1972, 57(3), 1281- 1292.   DOI
24 Loof, H. D.; Nilsson, L.; Rigler, R. J. Am. Chem. Soc. 1992, 114, 4028-4035.   DOI
25 Luzar, A.; Chandler, D. Phys. Rev. Lett. 1996, 76(6), 928.   DOI   ScienceOn
26 Karlsson, J. O. M.; Cravalho, E. G.; Toner, M. J. Appl. Phys. 1994, 75(9), 4442-4455.   DOI   ScienceOn
27 Luzar, A.; Chandler, D. Nature 1996, 379(6560), 55-57.   DOI
28 Noskov, S. Y.; Lamoureux, G.; Roux, B. J. Phys. Chem. B 2005, 109(14), 6705-6713.   DOI   ScienceOn
29 Chen, H. H.; Purtteman, J. J. P.; Heimfeld, S.; Folch, A.; Gao, D. Cryobiology 2007, 55(3), 200-209.   DOI   ScienceOn
30 Karlsson, J. O. M.; Toner, M. Biomaterials 1996, 17(3), 243-256.   DOI   ScienceOn
31 Toner, M.; Cravalho, E. G. J. Appl. Phys. 1990, 67(3), 1582-1593.   DOI
32 Toner, M.; Cravalho, E. G.; Karel, M.; Armant, D. R. Cryobiology 1991, 28(1), 55-71.   DOI   ScienceOn
33 Storey, K. B.; Baust, J. G.; Buescher, P. Cryobiology 1981, 18(3), 315-321.   DOI   ScienceOn
34 Li, S.; Dickinson, L. C.; Chinachoti, P. J. Agr. Food Chem. 1998, 46(1), 62-71.   DOI   ScienceOn
35 Franks, F. Cryobiology 1983, 20(3), 335-345.   DOI   ScienceOn
36 Lovelock, J. E. Biochem. J. 1954, 56(2), 265-270.
37 Kedem, O.; Katchalsky, A. Biochim. Biophys. Acta 1958, 27, 229-246.   DOI
38 Zdenek, H. Cryobiology 2003, 46(3), 205-229.   DOI   ScienceOn
39 Towey, J. J.; Soper, A. K.; Dougan, L. Phys. Chem. Chem. Phys. 2011, 13(20), 9397-9406.   DOI   ScienceOn
40 Kyrychenko, A.; Dyubko, T. S. Biophys. Chem. 2008, 136(1), 23-31.   DOI   ScienceOn
41 Dashnau, J. L.; Nucci, N. V.; Sharp, K. A.; Vanderkooi, J. M. J. Phys. Chem. B 2006, 110(27), 13670-13677.   DOI   ScienceOn
42 Weng, L.; Li, W.; Zuo, J.; Chen, C. J. Chem. Eng. Data 2011, 56(7), 3175-3182.   DOI   ScienceOn
43 Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. J. Mol. Liq. 2009, 146(1-2), 23-28.   DOI   ScienceOn
44 Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. J. Mol. Struc-theochem. 2009, 916(1-3), 37-46.   DOI   ScienceOn
45 Weng, L.; Chen, C.; Zuo, J.; Li, W. J. Phys. Chem. A 2011, 115(18), 4729-4737.   DOI   ScienceOn
46 Tu, Y.; Fang, H. Phys. Rev. E 2009, 79(1), 016707.   DOI
47 Mazur, P. J. Gen. Physiol. 1963, 47, 347-369.   DOI   ScienceOn
48 Dudzinski, D. M. J. Pediatr. Adolesc. Gynecol. 2004, 17(2), 97-102.   DOI   ScienceOn
49 Canavate, J. P.; Lubi n, L. M. Aquaculture 1995, 136(3-4), 277-290.   DOI   ScienceOn
50 He, Z.; Liu, H.-C.; Rosenwaks, Z. Fertil. Steril. 2003, 79(2), 347-354.   DOI   ScienceOn
51 Jacobs, M. H. J. Cell Comp. Physiol. 1933, 2(4), 427-444.   DOI