Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.5.1361

Matrix Infrared Spectra and DFT Computations of CH2CNH and CH2NCH Produced from CH3CN by Laser-Ablation Plume Radiation  

Cho, Han-Gook (Department of Chemistry, University of Incheon)
Publication Information
Abstract
The smallest ketenimine and hydrogen cyanide N-methylide ($CH_2CNH$ and $CH_2NCH$) are provided from the argon/acetonitrile matrix samples exposed to radiation from laser ablation of transition-metals. New infrared bands are observed in addition to better determination of the vibrational characteristics for the previously reported bands, and the $^{13}C$ substituted isotopomers ($^{13}{CH_2}^{13}CNH$ and $^{13}CH_2N^{13}CH$) are also generated. Density functional frequency calculations and the D and $^{13}C$ isotopic shifts substantiate the vibrational assignments. $CH_2CNH$ is probably produced through single-step conversion of $CH_3CN$, whereas $CH_2NCH$ through two-step conversion via 2H-azirine. Inter-conversions between these two products evidently do not occur during photolysis and annealing.
Keywords
Acetonitrile; Ketenimine; N-Methylide; Matrix-infrared; DFT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andrews, L. Chem. Soc. Rev. 2004, 33, 123-132.   DOI   ScienceOn
2 Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2010, 114, 891-897.   DOI   ScienceOn
3 Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2010, 114, 5997-6006.   DOI   ScienceOn
4 Cho, H.-G.; Andrews, L. J. Organomet. Chem. 2012, 703, 25-33.   DOI   ScienceOn
5 Cho, H.-G.; Andrews, L. Organometallics 2011, 31, 535-544.
6 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford, CT, 2009.
7 Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.   DOI   ScienceOn
8 Lee, C.; Yang, Y.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.   DOI   ScienceOn
9 Burke, K.; Perdew, J. P.; Wang, Y. In Electronic Density Functional Theory: Recent Progress and New Directions; Dobson, J. F., Vignale, G., Das, M. P., Eds.; Plenum: 1998.
10 Fukui, K. Acc. Chem. Res. 1981, 14, 363-368.   DOI
11 Sassi, P.; Paliani, G.; Cataliotti, R. S. J. Chem. Phys. 1998, 108, 10197-10205.   DOI   ScienceOn
12 Deng, R.; Trenary, M. J. Phys. Chem. C 2007, 111, 17088-17093. (MeCN isomers).   DOI   ScienceOn
13 Yang, X.; Maeda, S.; Ohno, K. J. Phys. Chem. A 2005, 109, 7319-7358.   DOI   ScienceOn
14 Fan, L.; Ziegler, T. J. Chem. Phys. 1990, 92, 3645-3652. (PES of $CH_{3}NC$).   DOI
15 Hattori, R.; Suzuki, E.; Shimizu, K. J. Mol. Struct. 2005, 738, 165-170. ($CH_{3}NC$).   DOI   ScienceOn
16 Moran, S.; Ellis, H. B., Jr.; DeFrees, D. J.; McLean, A. D.; Ellison, G. B. J. Am. Chem. Soc. 1987, 109, 5996-6003.   DOI
17 Svejda, P.; Volman, D. H. J. Phys. Chem. 1970, 74, 1872-1875.   DOI
18 Egland, R. J.; Symons, M. R. C. J. Chem. Soc. A 1970, 5, 1326-1329. ($H_{2}CNC$).
19 Moran, S.; Ellis, H. B., Jr.; DeFrees, D. J.; McLean, A. D.; Paulson, S. E.; Ellison, G. B. J. Am. Chem. Soc. 1987, 109, 6004- 6010.   DOI
20 Hirao, T.; Ozeki, H.; Saito, S.; Yamamoto, S. J. Chem. Phys. 2007, 127, 134312-1-7. ($H_{2}CNC$).   DOI   ScienceOn
21 Maier, G.; Reisenauser, H. P.; Rademacher, K. Chem. Eur. J. 1998, 4, 1957-1963.   DOI
22 Dendramis, A.; Leroi, G. E. J. Chem. Phys. 1977, 66, 4334-4341.   DOI
23 Nimlos, M. R.; Davico, G.; Geise, C. M.; Wenthold, P. G.; Blanksby, W. C.; Lineberger, S. J.; Hadad, C. M.; Petersson, G. A.; Ellison, G. B. J. Chem. Phys. 2002, 117, 4323-4340.   DOI   ScienceOn
24 Jacox, M. E. J. Phys. Chem. Ref. Data 2003, 32, 1-441. (HCCN, HCNC, & cyc-HCNC).   DOI   ScienceOn
25 Jacox, M. E. Chem. Phys. 1979, 43, 157-172.   DOI   ScienceOn
26 Jacox, M. E.; Milligan, D. E. J. Am. Chem. Soc. 1963, 85, 278-282.   DOI
27 Maier, G.; Schmidt, C.; Reisenauer, H. P.; Endlein, E.; Becker, D; Eckwert, J.; Hess, B. A.; Schaad, L. J. Chem. Ber. 1993, 126, 2337-2352.   DOI   ScienceOn
28 Sandholm, S. T.; Bjarnov, E.; Schwendeman, R. H. J. Mol. Spectrosc. 1982, 95, 276-287.   DOI   ScienceOn
29 Cho, H.-G.; Andrews, L. J. Phys. Chem. 2011, 115, 8638-8642.   DOI   ScienceOn
30 Kukolich, S. G. J. Chem. Phys. 1982, 76, 997-1006.   DOI
31 Andrews, L.; Kushto, G. P.; Zhou, M.; Willson, S. P.; Souter, P. F. J. Chem. Phys. 1999, 110, 4457-4466.   DOI   ScienceOn
32 Andrews, L.; Cho, H.-G. Organometallics 2006, 25, 4040-4053. (Review article).   DOI   ScienceOn
33 Cho, H.-G.; Andrews, L. J. Am. Chem. Soc. 2008, 130, 15836-15841.   DOI   ScienceOn
34 Zhou, M.; Chen, M.; Zhang, L.; Lu, H. J. Phys. Chem. A 2002, 106, 9017-9023.   DOI   ScienceOn
35 Cho, H.-G.; Andrews, L. Dalton Trans. 2011, 40, 11115-11124.   DOI   ScienceOn
36 Andrews, L.; Citra, A. Chem. Rev. 2002, 102, 885-911.   DOI   ScienceOn