Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.1.221

Preparation of Ruthenium Incorporated Heterogeneous Catalysts Using Hydroxyapatite as Catalytic Supports for Aerobic Oxidation of Alcohols  

Kim, Sohee (Department of Chemistry and RINS, Gyeongsang National University)
Jung, Jong-Hwa (Department of Chemistry and RINS, Gyeongsang National University)
Kim, Dong-Hee (Department of Orthopaedic Surgery, School of Medicine, Gyeongsang National University Hospital)
Woo, Dong Kyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Park, Joon B. (Institute of Fusion Science, Department of Chemistry Education, Chonbuk National University)
Choi, Myong Yong (Department of Chemistry and RINS, Gyeongsang National University)
Kwon, Ki-Young (Department of Chemistry and RINS, Gyeongsang National University)
Publication Information
Abstract
Three different kinds of hydroxyapatites (HAPs) having different sizes and compositions are prepared by hydrothermal and molten salt syntheses. Using the ion exchange reactions, ruthenium ions are incorporated on the surface of HAPs. The crystallinity, morphology and ruthenium contents are investigated by XRD, SEM, TEM and ICP. We found that smaller size of HAP having large amounts of ruthenium under ion exchange reaction shows higher catalytic activity for aerobic oxidation of alcohols.
Keywords
Aerobic oxidation; Heterogeneous catalysts; Hydroxyapatite; Surface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Okun, N. M.; Anderson, T. M.; Hill, C. L. J. Am. Chem. Soc. 2003, 125, 3194.   DOI   ScienceOn
2 Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003, 42, 1480.   DOI   ScienceOn
3 Jorgensen, B.; Egholm Christiansen, S.; Dahl Thomsen, M. L.; Christensen, C. H. J. Catalysis 2007, 251, 332.   DOI   ScienceOn
4 Kay, M. I.; Young, R. A.; Posner, A. S. Nature 1964, 204, 1050.   DOI   ScienceOn
5 Kim, H. M.; Himeno, T.; Kawashita, M.; Kokubo, T.; Nakamura, T. J. R. Soc. Interface 2004, 1, 17.   DOI   ScienceOn
6 Watanabe, J.; Akashi, M. Biomacromolecules 2006, 7, 3008.   DOI   ScienceOn
7 Kwon, K. Y.; Wang, E.; Chung, A.; Chang, N.; Saiz, E.; Choe, U. J.; Koobatian, M.; Lee, S. W. Langmuir 2008, 24, 11063.   DOI   ScienceOn
8 Rendon-Angeles, J. C.; Yanagisawa, K.; Ishizawa, N.; Oishi, S. Chem. Mater. 2000, 12, 2143.   DOI   ScienceOn
9 Kwon, K. Y.; Wang, E.; Chung, A.; Chang, N.; Lee, S. W. J. Phys. Chem. C 2009, 113, 3369.
10 Kwon, K. Y.; Wang, E.; Chang, N.; Lee, S. W. Langmuir 2009, 25, 7205.   DOI   ScienceOn
11 Xu, Y.; Schwartz, F. W.; Traina, S. J. Environ. Sci. Tech. 1994, 28, 1472.   DOI   ScienceOn
12 Matsunaga, K.; Inamori, H.; Murata, H. Phys. Rev. B 2008, 78.
13 Corami, A.; Mignardi, S.; Ferrini, V. J. Colloid Interf. Sci. 2008, 317, 402.   DOI   ScienceOn
14 Reichert, J.; Binner, J. G. P. J. Mater. Sci. 1996, 31, 1231.   DOI
15 Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 10657.   DOI   ScienceOn
16 Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144.   DOI   ScienceOn
17 Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2003, 125, 11460.   DOI   ScienceOn
18 Tas, A. C. J. Am. Ceram. Soc. 2001, 84, 295.
19 Nakata, K.; Liu, B.; Ishikawa, Y.; Sakai, M.; Saito, H.; Ochiai, T.; Sakai, H.; Murakami, T.; Abe, M.; Takagi, K.; Fujishima, A. Chem. Lett. 2011, 40, 1107.   DOI   ScienceOn
20 Zeng, H.; Chittur, K. K.; Lacefield, W. R. Biomaterials 1999, 20, 443.   DOI   ScienceOn
21 Cazalbou, S.; Eichert, D.; Ranz, X.; Drouet, C.; Combes, C.; Harmand, M. F.; Rey, C. J. Mate. Sci. 2005, 16, 405.
22 Mori, K.; Tano, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. New J. Chem. 2002, 26, 1536.   DOI   ScienceOn
23 Mori, K.; Mitani, Y.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Comm. 2005, 3331.
24 Hara, T.; Kaneta, T.; Mori, K.; Mitsudome, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Green Chem. 2007, 9, 1246.   DOI   ScienceOn