Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3790

Nanoscale Islands of the Self Assembled Monolayer of Alkanethiol  

Saha, Joyanta K. (Department of Nanomaterials Engineering, Pusan National University)
Yang, Mino (Department of Chemistry, Chungbuk National University)
Jang, Joonkyung (Department of Nanomaterials Engineering, Pusan National University)
Publication Information
Abstract
Molecular dynamics simulations were performed to study the structure and stability of a nanoscale self-assembled monolayer (SAM) of alkanethiol on a gold (111) surface. The tilt angle and orientational order of the alkyl chains in the SAM island were examined by systematically varying the size of the island. The chain length dependence of the SAM island was examined by considering alkanethiols containing 12, 16, 20, and 24 carbon atoms. The minimum diameter of SAM islands made from 1-tetracosanethiol, 1-ecosanethiol, 1-hexadecanethiol and 1-dodecanethiol were 2.29, 1.9, 4.7 and 4.76 nm, respectively. These set the ultimate resolution that can be patterned by soft nanolithography. As the length of alkanethiol increases, the SAM islands became more ordered in both orientation and conformation of the alkyl chains.
Keywords
Self-assembled monolayer; Alkanethiol; Chain length; Nanolithography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103.   DOI   ScienceOn
2 Mirkin, C. A.; Ratner, M. A. Annu. Rev. Phys. Chem. 1992, 43, 719.   DOI   ScienceOn
3 Sackmann, E. Science 1996, 271, 43.   DOI   ScienceOn
4 Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661.   DOI   ScienceOn
5 Silverberg, M. J. Chem. Phys. 1993, 99, 9255.   DOI   ScienceOn
6 Ulman, A. Chemical Reviews 1996, 96, 1533.   DOI   ScienceOn
7 Salaita, K.; Wang, Y.; Fragala, J.; Vega, R. A.; Liu, C.; Mirkin, C. A. Angew. Chem. Int. Ed. 2006, 45, 7220.   DOI   ScienceOn
8 Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. Chemical Reviews 2005, 105, 1171.   DOI   ScienceOn
9 Manandhar, P.; Jang, J.; Schatz, G. C.; Ratner, M. A.; Hong, S. Phys. Rev. Lett. 2003, 90, 115505.   DOI   ScienceOn
10 Saha, J. K.; Ahn, Y.; Kim, H.; Schatz, G. C.; Jang, J. J. Phys. Chem. C 2011, 115, 13193.   DOI   ScienceOn
11 Nishi, N.; Hobara, D.; Yamamoto, M.; Kakiuchi, T. J. Chem. Phys. 2003, 118, 1904.   DOI   ScienceOn
12 Nuzzo, R. G.; Korenic, E. M.; Dubois, L. H. J. Chem. Phys. 1990, 93, 767.   DOI
13 Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559.   DOI
14 Ghorai, P. K.; Glotzer, S. C. J. Phys. Chem. C 2007, 111, 15857.   DOI   ScienceOn
15 Hautman, J.; Klein, M. L. J. Chem. Phys. 1989, 91, 4994.   DOI
16 Bhatia, R.; Garrison, B. J. Langmuir 1997, 13, 4038.   DOI   ScienceOn
17 Fujiwara, S.; Sato, T. J. Chem. Phys. 1999, 110, 9757.   DOI   ScienceOn
18 Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225.   DOI   ScienceOn
19 Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 1984, 106, 6638.   DOI   ScienceOn
20 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: New York, 1987.
21 Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684.   DOI
22 Zhao, X.; Leng, Y.; Cummings, P. T. Langmuir 2006, 22, 4116.   DOI   ScienceOn
23 Ahn, Y.; Saha, J. K.; Schatz, G. C.; Jang, J. J. Phys. Chem. C 2011, 115, 10668.   DOI   ScienceOn
24 Hautman, J.; Klein, M. L. J. Chem. Phys. 1989, 91, 4994.   DOI
25 Smith, W.; Yong, C. W.; Rodger, P. M. Mol. Simul. 2002, 28, 385.   DOI