Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3727

Interaction between Metalloporphyrins and Diazine Tautomers  

Xu, Huiying (College of Biology & Environment Engineering, Zhejiang Shuren University (East China))
Wang, Wei (Zhenhai Environmental Monitoring Station (East China))
Zhu, Jianqing (Department of Basic Courses, Zhejiang Shuren University (East China))
Xu, Xiaolu (College of Biology & Environment Engineering, Zhejiang Shuren University (East China))
Zhang, Deyong (College of Biology & Environment Engineering, Zhejiang Shuren University (East China))
Publication Information
Abstract
The interaction between metalloporphyrins and diazine tautomers was investigated using quantum chemistry method. The results showed that the metal atom in the metalloporphyrin was not coplanar with porphin ring, and zinc porphyrin has the most extent of its non-coplanar nature. The most stable complex in nine complexes was iron porphyrin. NBO analysis indicated that the interaction between the lone pair of electrons on the nitrogen atom and the unoccupied lone pair orbital of metal contributes significantly to the stability of the complexes. Through the conceptual DFT parameter and Fukui dual descriptor, the thermodynamic stability and reactivity of complexes were analyzed. The density difference function (DDF) analyzes were performed to explore the rearrangement of electronic density after the coordination interaction. NICS calculation indicated that metalloporphyrin aromaticity was reduced after the coordination interaction, and aromaticity of diazine tautomer was increased along direction vector of the coordination interaction force.
Keywords
Metalloporphyrin; Coordination interaction; Density difference function (DDF); Fukui function; Aromaticity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fuchter, M. J.; Hoffman, B. M.; Barrett, G. M. J. Org. Chem. 2005, 70, 5086.   DOI   ScienceOn
2 Schenning, A. P.; Spelberg, J. H.; Driessen, M. C.; Hauser, M. J.; Feiters, M. C.; Nolte, R. J. J. Am. Chem. Soc. 1995, 117, 12655.   DOI
3 Ruzie, C.; Even-Hernandez, P.; Boitrel, B. Org. Lett. 2008, 10, 2673.   DOI   ScienceOn
4 Nam, W.; Lim, M. H.; Lee, H. J.; Kim, C. J. Am. Chem. Soc. 2000, 122, 6641.   DOI   ScienceOn
5 Poltowicz, J.; Pamin, K.; Haber, J. J. Mol. Catal. 2006, 257, 154.   DOI   ScienceOn
6 Gross, Z.; Nimri, S. Inorg. Chem. 1994, 33, 1731.   DOI   ScienceOn
7 Lombardi, A.; Nastri, F.; Pavone, V. Chem. Rev. 2001, 101, 3165.   DOI   ScienceOn
8 Beletskaya, I.; Tyurin, V. S.; Tsivadze, A. Y.; Guilard, R.; Stern, C. Chem. Rev. 2009, 109, 1659.   DOI   ScienceOn
9 Kumar, D.; Tahsini, L.; Visser, S. P.; Kang, H. Y.; Kim, S. J.; Nam, W. J. Phys. Chem. A 2009, 113, 11713.   DOI   ScienceOn
10 Lehn, J. M. Science 1985, 227, 849.   DOI   ScienceOn
11 Frisch, M. J.; Tucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, 2004.
12 Borrelli, R.; Domcke, W. Chem. Phys. Lett. 2010, 498, 230.   DOI   ScienceOn
13 Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.   DOI   ScienceOn
14 Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.   DOI   ScienceOn
15 Xu, H. Y.; Wang, W. Acta Phys. -Chim. Sin. 2011, 27, 2565.
16 Reed, A. E.; Weinhold, F.; Curtiss, L. A.; Pochatko, D. J. Chem Rev. 1988, 88, 899.   DOI
17 Xu, X.; Shang, Z.; Wang, G.; Li, R.; Cai, Z.; Zhao, X. J. Phys. Chem. A 2005, 109, 3754.   DOI   ScienceOn
18 Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.
19 Liu, S. B.; Govind, N. J. Phys. Chem. A 2008, 112, 6690.   DOI   ScienceOn
20 Liu, S. B.; Ess, D. H.; Schauer, C. K. J. Phys. Chem. A 2011, 115, 4738.   DOI   ScienceOn
21 Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109, 205.   DOI   ScienceOn
22 Xu, L.; Lv, J.; Sang, P.; Zou, J. W.; Yu, Q. S.; Xu, M. B. Chem. Phys. 2011, 379, 66.   DOI   ScienceOn
23 Wang, J. J. Chin. J. Org. Chem. 2005, 25, 1353.
24 Schleyer, P. V. R.; Jiao, H.; Glukhovtsev, M. N.; Chandrasekhar, J.; Kraka, E. J Am. Chem. Soc. 1994, 116, 10129.   DOI   ScienceOn
25 Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317.   DOI   ScienceOn