Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.10.2921

Continuous Production of Immunoliposomes using a Microvalve-controlled Microfluidic Device (μFD)  

Jin, Yan (Department of Chemistry and Nano Science (BK21 plus), Ewha Global Top 5 Program, Ewha Womans University)
Kim, So Hyun (Department of Chemistry and Nano Science (BK21 plus), Ewha Global Top 5 Program, Ewha Womans University)
Kim, Myunghee (Department of Food Science and Technology, Yeungnam University)
Park, Sungsu (Department of Chemistry and Nano Science (BK21 plus), Ewha Global Top 5 Program, Ewha Womans University)
Publication Information
Abstract
Immunoliposomes (antibody-conjugated liposomes) are highly useful as both a drug carrier in drug delivery and as a reporting probe in immunodiagnostics. However, antibody conjugation is lengthy and cumbersome, because this includes several steps such as derivatization of the antibody, conjugation of the derivatized antibody to liposomes, and separation of the unbound antibodies from immunoliposomes. Recently, liposome preparation steps have simplified by using microfluidic devices (${\mu}FDs$) where liposomes are formed when a stream of lipids in solvent is hydrodynamically focused between two oblique buffer streams in a microchannel. Herein, we report a simple method for the production of immunoliposomes (rabbit IgG-conjugated liposomes) using microvalve-controlled ${\mu}FD$. The presence of antibody on the liposome was verified by observing the binding of immunoliposomes to rabbit IgG on the surface. The results suggest that immunoliposomes can be easily prepared through sequential mixing of antibody, conjugation reagents, preformed liposomes using microvalve-controlled ${\mu}FD$.
Keywords
Liposomes; Immunoliposomes; Microfluidic device; SRB;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lian, T. S.; Rodney, J. Y. H. J. Pharm. Sci. 2001, 90, 667.   DOI   ScienceOn
2 Feng, S. S.; Ruan, G.; Li, Q. T. Biomaterials 2004, 25, 5181.   DOI   ScienceOn
3 Torchilin, V. P. Nat. Rev. Drug Discov. 2005, 4, 145.   DOI   ScienceOn
4 Heath, T. D.; Fraley, R. T.; Papahadjopoulos, D. Science 1980, 210, 539.   DOI   ScienceOn
5 Kung, V. T.; Maxim, P. E.; Veltri, R. W.; Martin, F. Biochim. Biophys. Acta 1985, 839, 105.   DOI   ScienceOn
6 Park, S.; Durst, R. A. Anal. Chem. 2000, 280, 151.
7 Jahn, A.; Vreeland, W. N.; DeVoe, D. L.; Locascio, L. E.; Gaitan, M. Langmuir 2007, 23, 6289.   DOI   ScienceOn
8 Kou, S.; Lee, H. N.; Van Noort, D.; Swamy, K. M. K.; Kim, S. H.; Soh, J. H.; Lee, K. M.; Nam, S. W.; Yoon, J.; Park, S. Angew. Chem. Int. Ed. 2008, 47, 872.   DOI   ScienceOn
9 Xiao, L.; Mahto, S. K.; Rhee, S. W. Biochip J. 2012, 6, 335.   DOI
10 Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.   DOI   ScienceOn
11 Kim, J. A.; Hwang, H.; Jun, E. J.; Nam, S. W.; Lee, K. M.; Kim, S. H.; Yoon, J.; Kang, S.; Park, S. Bull. Korean Chem. Soc. 2008, 29, 225.   DOI   ScienceOn
12 Lee, N. Y.; Yang, Y. S.; Kim, Y. S.; Park, S. Bull. Korean Chem. Soc. 2006, 27, 479.   DOI   ScienceOn
13 Zhang, L.; Hu, J.; Lu, Z. J. Colloid Interface Sci. 1997, 190, 76.   DOI   ScienceOn
14 Shukla, S.; Leem, H.; Kim, M. Anal. Bioanal. Chem. 2011, 401,2581.   DOI   ScienceOn
15 Graber, D. J.; Zieziulewicz, T. J.; Lawrence, D. A.; Shain, W.; Turner, J. N. Langmuir 2003, 19, 5431   DOI   ScienceOn
16 Ho, J. A. A.; Hsu, H. W. Anal. Chem. 2003, 75, 4330.   DOI   ScienceOn